Category Archives: quantitative research

Understanding Variables

In research, there are many terms that have the same underlying meaning which can be confusing for researchers as they try to complete a project. The problem is that people have different backgrounds and learn different terms during their studies and when they try to work with others there is often confusion  over what is what.

In this post, we will try to clarify as much as possible various terms that are used when referring to variables. We will look at the following during this discussion

  • Definition of a variable
  • Minimum knowledge of the characteristics of a variable in research
  • Various synonyms of variable

Definition

The word variable has the root of “vary” and the suffix “able”. This literally means that a variable is something that is able to change. Examples include such concepts as height, weigh, salary, etc. All of these concepts change as you gather data from different people. Statistics is primarily about trying to explain and or understand the variability of variables.

However, to make things more confusing there are times in research when a variable dies not change or remains constant. This will be explained in greater detail in a moment.

Minimum You Need to Know

Two broad concepts that you need to understand regardless of the specific variable terms you encounter are the following

  • Whether the variable(s) are independent or dependent
  • Whether the variable(s) are categorical or continuous

When we speak of independent and dependent variables we are looking at the relationship(s) between variables. Dependent variables are explained by independent variables. Therefore, one dimension of variables is understanding how they relate to each other and the most basic way to see this is independent vs dependent.

The second dimension to consider when thinking about variables is how they are measured which is captured with the terms categorical or continuous. A categorical variable has a finite number of values that can be used. Examples in clue gender, hair color, or cellphone brand. A person can only be male or female, have blue or brown eyes, and can only have one brand of cellphone.

Continuous variables are variables that can take on an infinite number of values. Salary, temperature, etc are all continuous in nature. It is possible to limit a continuous variable to categorical variable by creating intervals in which to place values. This is commonly done when creating bins for histograms. In sum, here are the four possible general variable types below

  1. Independent categorical
  2. Independent continuous
  3. Dependent categorical
  4. Dependent continuous

Natural, most models have one dependent categorical or continuous variable, however you can have any combination of continuous and categorical variables as independents. Remember that all variables have the above characteristics despite whatever terms is used for them.

Variable Synonyms

Below is a list of various names that variables go by in different disciplines. This is by no means an exhaustive list.

Experimental variable

A variable whose values are independent of any changes in the values of other variables. In other words, an experimental variable is just another term for independent variable.

Manipulated Variable

A variable that is independent in an experiment but whose value/behavior the researcher is able to control or manipulate. This is also another term for an independent variable.

Control Variable

A variable whose value does not change. Controlling a variable helps to explain the relationship between the independent and dependent variable in an experiment by making sure the control variable has not influenced in the model

Responding Variable

The dependent variable in an experiment. It responds to the experimental variable.

Intervening Variable

This is a hypothetical variable. It is used to explain the causal links between variables. Since they are hypothetical, they are observed in an actual experiment. For example, if you are looking at a strong relationship between income and life expectancy  and find a positive relationship. The intervening variable for this may be access to healthcare. People who make more money have more access to health care and this contributes to them often living longer.

Mediating Variable

This is the same thing as an intervening variable. The difference being often that the mediating variable is not always hypothetical in nature and is often measured it’s self.

Confounding Variable

A confounder is a variable that influences both the independent and dependent variable, causing a spurious or false association. Often a confounding variable is a causal idea and  cannot be described in terms of correlations or associations with other variables. In other words, it is often the same thing as an intervening variable.

Explanatory Variable

This variable is the same as an independent variable. The difference being that an independent variable is not influenced by any other variables. However, when independence is not for sure, than the variable is called an explanatory variable.

Predictor Variable

A predictor variable is an independent variable. This term is commonly used for regression analysis.

Outcome Variable

An outcome variable is a dependent variable in the context of regression analysis.

Observed Variable

This is a variable that is measured directly. An example would be gender or height. There is no psychology construct to infer the meaning of such variables.

Unobserved Variable

Unobserved variables are constructs that cannot be measured directly. In such situations, observe variables are used to try to determine the characteristic of the unobserved variable. For example, it is hard to measure addiction directly. Instead, other things will be measure to infer addiction such as health, drug use, performance, etc. The measures of this observed variables will indicate the level of the unobserved variable of addiction

Features

A feature is an independent variable in the context of machine learning and data science.

Target Variable

A target variable is the dependent variable in the context f machine learning and data science.

To conclude this, below is a summary of the different variables discussed and whether they are independent, dependent, or neither.

Independent Dependent Neither
Experimental Responding Control
Manipulated Target Explanatory
Predictor Outcome Intervening
Feature Mediating
Observed
Unobserved
Confounding

You can see how confusing this can be. Even though variables are mostly independent or dependent, there is a class of variables that do not fall into either category. However, for most purposes, the first to columns cover the majority of needs in simple research.

Conclusion

The confusion over variables is mainly due to an inconsistency in terms across variables. There is nothing right or wrong about the different terms. They all developed in different places to address the same common problem. However, for students or those new to research, this can be confusing and this post hopefully helps to clarify this.

Data Exploration Case Study: Credit Default

Exploratory data analysis is the main task of a Data Scientist with as much as 60% of their time being devoted to this task. As such, the majority of their time is spent on something that is rather boring compared to building models.

This post will provide a simple example of how to analyze a dataset from the website called Kaggle. This dataset is looking at how is likely to default on their credit. The following steps will be conducted in this analysis.

  1. Load the libraries and dataset
  2. Deal with missing data
  3. Some descriptive stats
  4. Normality check
  5. Model development

This is not an exhaustive analysis but rather a simple one for demonstration purposes. The dataset is available here

Load Libraries and Data

Here are some packages we will need

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import norm
from sklearn import tree
from scipy import stats
from sklearn import metrics

You can load the data with the code below

df_train=pd.read_csv('/application_train.csv')

You can examine what variables are available with the code below. This is not displayed here because it is rather long

df_train.columns
df_train.head()

Missing Data

I prefer to deal with missing data first because missing values can cause errors throughout the analysis if they are not dealt with immediately. The code below calculates the percentage of missing data in each column.

total=df_train.isnull().sum().sort_values(ascending=False)
percent=(df_train.isnull().sum()/df_train.isnull().count()).sort_values(ascending=False)
missing_data=pd.concat([total,percent],axis=1,keys=['Total','Percent'])
missing_data.head()
 
                           Total   Percent
COMMONAREA_MEDI           214865  0.698723
COMMONAREA_AVG            214865  0.698723
COMMONAREA_MODE           214865  0.698723
NONLIVINGAPARTMENTS_MODE  213514  0.694330
NONLIVINGAPARTMENTS_MEDI  213514  0.694330

Only the first five values are printed. You can see that some variables have a large amount of missing data. As such, they are probably worthless for inclusion in additional analysis. The code below removes all variables with any missing data.

pct_null = df_train.isnull().sum() / len(df_train)
missing_features = pct_null[pct_null > 0.0].index
df_train.drop(missing_features, axis=1, inplace=True)

You can use the .head() function if you want to see how  many variables are left.

Data Description & Visualization

For demonstration purposes, we will print descriptive stats and make visualizations of a few of the variables that are remaining.

round(df_train['AMT_CREDIT'].describe())
Out[8]: 
count     307511.0
mean      599026.0
std       402491.0
min        45000.0
25%       270000.0
50%       513531.0
75%       808650.0
max      4050000.0

sns.distplot(df_train['AMT_CREDIT']

1.png

round(df_train['AMT_INCOME_TOTAL'].describe())
Out[10]: 
count       307511.0
mean        168798.0
std         237123.0
min          25650.0
25%         112500.0
50%         147150.0
75%         202500.0
max      117000000.0
sns.distplot(df_train['AMT_INCOME_TOTAL']

1.png

I think you are getting the point. You can also look at categorical variables using the groupby() function.

We also need to address categorical variables in terms of creating dummy variables. This is so that we can develop a model in the future. Below is the code for dealing with all the categorical  variables and converting them to dummy variable’s

df_train.groupby('NAME_CONTRACT_TYPE').count()
dummy=pd.get_dummies(df_train['NAME_CONTRACT_TYPE'])
df_train=pd.concat([df_train,dummy],axis=1)
df_train=df_train.drop(['NAME_CONTRACT_TYPE'],axis=1)

df_train.groupby('CODE_GENDER').count()
dummy=pd.get_dummies(df_train['CODE_GENDER'])
df_train=pd.concat([df_train,dummy],axis=1)
df_train=df_train.drop(['CODE_GENDER'],axis=1)

df_train.groupby('FLAG_OWN_CAR').count()
dummy=pd.get_dummies(df_train['FLAG_OWN_CAR'])
df_train=pd.concat([df_train,dummy],axis=1)
df_train=df_train.drop(['FLAG_OWN_CAR'],axis=1)

df_train.groupby('FLAG_OWN_REALTY').count()
dummy=pd.get_dummies(df_train['FLAG_OWN_REALTY'])
df_train=pd.concat([df_train,dummy],axis=1)
df_train=df_train.drop(['FLAG_OWN_REALTY'],axis=1)

df_train.groupby('NAME_INCOME_TYPE').count()
dummy=pd.get_dummies(df_train['NAME_INCOME_TYPE'])
df_train=pd.concat([df_train,dummy],axis=1)
df_train=df_train.drop(['NAME_INCOME_TYPE'],axis=1)

df_train.groupby('NAME_EDUCATION_TYPE').count()
dummy=pd.get_dummies(df_train['NAME_EDUCATION_TYPE'])
df_train=pd.concat([df_train,dummy],axis=1)
df_train=df_train.drop(['NAME_EDUCATION_TYPE'],axis=1)

df_train.groupby('NAME_FAMILY_STATUS').count()
dummy=pd.get_dummies(df_train['NAME_FAMILY_STATUS'])
df_train=pd.concat([df_train,dummy],axis=1)
df_train=df_train.drop(['NAME_FAMILY_STATUS'],axis=1)

df_train.groupby('NAME_HOUSING_TYPE').count()
dummy=pd.get_dummies(df_train['NAME_HOUSING_TYPE'])
df_train=pd.concat([df_train,dummy],axis=1)
df_train=df_train.drop(['NAME_HOUSING_TYPE'],axis=1)

df_train.groupby('ORGANIZATION_TYPE').count()
dummy=pd.get_dummies(df_train['ORGANIZATION_TYPE'])
df_train=pd.concat([df_train,dummy],axis=1)
df_train=df_train.drop(['ORGANIZATION_TYPE'],axis=1)

You have to be careful with this because now you have many variables that are not necessary. For every categorical variable you must remove at least one category in order for the model to work properly.  Below we did this manually.

df_train=df_train.drop(['Revolving loans','F','XNA','N','Y','SK_ID_CURR,''Student','Emergency','Lower secondary','Civil marriage','Municipal apartment'],axis=1)

Below are some boxplots with the target variable and other variables in the dataset.

f,ax=plt.subplots(figsize=(8,6))
fig=sns.boxplot(x=df_train['TARGET'],y=df_train['AMT_INCOME_TOTAL'])

1.png

There is a clear outlier there. Below is another boxplot with a different variable

f,ax=plt.subplots(figsize=(8,6))
fig=sns.boxplot(x=df_train['TARGET'],y=df_train['CNT_CHILDREN'])

2

It appears several people have more than 10 children. This is probably a typo.

Below is a correlation matrix using a heatmap technique

corrmat=df_train.corr()
f,ax=plt.subplots(figsize=(12,9))
sns.heatmap(corrmat,vmax=.8,square=True)

1.png

The heatmap is nice but it is hard to really appreciate what is happening. The code below will sort the correlations from least to strongest, so we can remove high correlations.

c = df_train.corr().abs()

s = c.unstack()
so = s.sort_values(kind="quicksort")
print(so.head())

FLAG_DOCUMENT_12 FLAG_MOBIL 0.000005
FLAG_MOBIL FLAG_DOCUMENT_12 0.000005
Unknown FLAG_MOBIL 0.000005
FLAG_MOBIL Unknown 0.000005
Cash loans FLAG_DOCUMENT_14 0.000005

The list is to long to show here but the following variables were removed for having a high correlation with other variables.

df_train=df_train.drop(['WEEKDAY_APPR_PROCESS_START','FLAG_EMP_PHONE','REG_CITY_NOT_WORK_CITY','REGION_RATING_CLIENT','REG_REGION_NOT_WORK_REGION'],axis=1)

Below we check a few variables for homoscedasticity, linearity, and normality  using plots and histograms

sns.distplot(df_train['AMT_INCOME_TOTAL'],fit=norm)
fig=plt.figure()
res=stats.probplot(df_train['AMT_INCOME_TOTAL'],plot=plt)

12

This is not normal

sns.distplot(df_train['AMT_CREDIT'],fit=norm)
fig=plt.figure()
res=stats.probplot(df_train['AMT_CREDIT'],plot=plt)

12

This is not normal either. We could do transformations, or we can make a non-linear model instead.

Model Development

Now comes the easy part. We will make a decision tree using only some variables to predict the target. In the code below we make are X and y dataset.

X=df_train[['Cash loans','DAYS_EMPLOYED','AMT_CREDIT','AMT_INCOME_TOTAL','CNT_CHILDREN','REGION_POPULATION_RELATIVE']]
y=df_train['TARGET']

The code below fits are model and makes the predictions

clf=tree.DecisionTreeClassifier(min_samples_split=20)
clf=clf.fit(X,y)
y_pred=clf.predict(X)

Below is the confusion matrix followed by the accuracy

print (pd.crosstab(y_pred,df_train['TARGET']))
TARGET       0      1
row_0                
0       280873  18493
1         1813   6332
accuracy_score(y_pred,df_train['TARGET'])
Out[47]: 0.933966589813047

Lastly, we can look at the precision, recall, and f1 score

print(metrics.classification_report(y_pred,df_train['TARGET']))
              precision    recall  f1-score   support

           0       0.99      0.94      0.97    299366
           1       0.26      0.78      0.38      8145

   micro avg       0.93      0.93      0.93    307511
   macro avg       0.62      0.86      0.67    307511
weighted avg       0.97      0.93      0.95    307511

This model looks rather good in terms of accuracy of the training set. It actually impressive that we could use so few variables from such a large dataset and achieve such a high degree of accuracy.

Conclusion

Data exploration and analysis is the primary task of a data scientist.  This post was just an example of how this can be approached. Of course, there are many other creative ways to do this but the simplistic nature of this analysis yielded strong results

Hierarchical Regression in R

In this post, we will learn how to conduct a hierarchical regression analysis in R. Hierarchical regression analysis is used in situation in which you want to see if adding additional variables to your model will significantly change the r2 when accounting for the other variables in the model. This approach is a model comparison approach and not necessarily a statistical one.

We are going to use the “Carseats” dataset from the ISLR package. Our goal will be to predict total sales using the following independent variables in three different models.

model 1 = intercept only
model 2 = Sales~Urban + US + ShelveLoc
model 3 = Sales~Urban + US + ShelveLoc + price + income
model 4 = Sales~Urban + US + ShelveLoc + price + income + Advertising

Often the primary goal with hierarchical regression is to show that the addition of a new variable builds or improves upon a previous model in a statistically significant way. For example, if a previous model was able to predict the total sales of an object using three variables you may want to see if a new additional variable you have in mind may improve model performance. Another way to see this is in the following research question

Is a model that explains the total sales of an object with Urban location, US location, shelf location, price, income and advertising cost as independent variables superior in terms of R2 compared to a model that explains total sales with Urban location, US location, shelf location, price and income as independent variables?

In this complex research question we essentially want to know if adding advertising cost will improve the model significantly in terms of the r square. The formal steps that we will following to complete this analysis is as follows.

  1. Build sequential (nested) regression models by adding variables at each step.
  2. Run ANOVAs in order to compute the R2
  3. Compute difference in sum of squares for each step
    1. Check F-statistics and p-values for the SS differences.
  4. Compare sum of squares between models from ANOVA results.
  5. Compute increase in R2 from sum of square difference
  6. Run regression to obtain the coefficients for each independent variable.

We will now begin our analysis. Below is some initial code

library(ISLR)
data("Carseats")

Model Development

We now need to create our models. Model 1 will not have any variables in it and will be created for the purpose of obtaining the total sum of squares. Model 2 will include demographic variables. Model 3 will contain the initial model with the continuous independent variables. Lastly, model 4 will contain all the information of the previous models with the addition of the continuous independent variable of advertising cost. Below is the code.

model1 = lm(Sales~1,Carseats)
model2=lm(Sales~Urban + US + ShelveLoc,Carseats)
model3=lm(Sales~Urban + US + ShelveLoc + Price + Income,Carseats)
model4=lm(Sales~Urban + US + ShelveLoc + Price + Income + Advertising,Carseats)

We can now turn to the ANOVA analysis for model comparison #ANOVA Calculation We will use the anova() function to calculate the total sum of square for model 0. This will serve as a baseline for the other models for calculating r square

anova(model1,model2,model3,model4)
## Analysis of Variance Table
## 
## Model 1: Sales ~ 1
## Model 2: Sales ~ Urban + US + ShelveLoc
## Model 3: Sales ~ Urban + US + ShelveLoc + Price + Income
## Model 4: Sales ~ Urban + US + ShelveLoc + Price + Income + Advertising
##   Res.Df    RSS Df Sum of Sq       F    Pr(>F)    
## 1    399 3182.3                                   
## 2    395 2105.4  4   1076.89  89.165 < 2.2e-16 ***
## 3    393 1299.6  2    805.83 133.443 < 2.2e-16 ***
## 4    392 1183.6  1    115.96  38.406 1.456e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For now, we are only focusing on the residual sum of squares. Here is a basic summary of what we know as we compare the models.

model 1 = sum of squares = 3182.3
model 2 = sum of squares = 2105.4 (with demographic variables of Urban, US, and ShelveLoc)
model 3 = sum of squares = 1299.6 (add price and income)
model 4 = sum of squares = 1183.6 (add Advertising)

Each model is statistical significant which means adding each variable lead to some improvement.

By adding price and income to the model we were able to improve the model in a statistically significant way. The r squared increased by .25 below is how this was calculated.

2105.4-1299.6 #SS of Model 2 - Model 3
## [1] 805.8
805.8/ 3182.3 #SS difference of Model 2 and Model 3 divided by total sum of sqaure ie model 1
## [1] 0.2532131

When we add Advertising to the model the r square increases by .03. The calculation is below

1299.6-1183.6 #SS of Model 3 - Model 4
## [1] 116
116/ 3182.3 #SS difference of Model 3 and Model 4 divided by total sum of sqaure ie model 1
## [1] 0.03645162

Coefficients and R Square

We will now look at a summary of each model using the summary() function.

summary(model2)
## 
## Call:
## lm(formula = Sales ~ Urban + US + ShelveLoc, data = Carseats)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.713 -1.634 -0.019  1.738  5.823 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       4.8966     0.3398  14.411  < 2e-16 ***
## UrbanYes          0.0999     0.2543   0.393   0.6947    
## USYes             0.8506     0.2424   3.510   0.0005 ***
## ShelveLocGood     4.6400     0.3453  13.438  < 2e-16 ***
## ShelveLocMedium   1.8168     0.2834   6.410 4.14e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.309 on 395 degrees of freedom
## Multiple R-squared:  0.3384, Adjusted R-squared:  0.3317 
## F-statistic: 50.51 on 4 and 395 DF,  p-value: < 2.2e-16
summary(model3)
## 
## Call:
## lm(formula = Sales ~ Urban + US + ShelveLoc + Price + Income, 
##     data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9096 -1.2405 -0.0384  1.2754  4.7041 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     10.280690   0.561822  18.299  < 2e-16 ***
## UrbanYes         0.219106   0.200627   1.092    0.275    
## USYes            0.928980   0.191956   4.840 1.87e-06 ***
## ShelveLocGood    4.911033   0.272685  18.010  < 2e-16 ***
## ShelveLocMedium  1.974874   0.223807   8.824  < 2e-16 ***
## Price           -0.057059   0.003868 -14.752  < 2e-16 ***
## Income           0.013753   0.003282   4.190 3.44e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.818 on 393 degrees of freedom
## Multiple R-squared:  0.5916, Adjusted R-squared:  0.5854 
## F-statistic: 94.89 on 6 and 393 DF,  p-value: < 2.2e-16
summary(model4)
## 
## Call:
## lm(formula = Sales ~ Urban + US + ShelveLoc + Price + Income + 
##     Advertising, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2199 -1.1703  0.0225  1.0826  4.1124 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     10.299180   0.536862  19.184  < 2e-16 ***
## UrbanYes         0.198846   0.191739   1.037    0.300    
## USYes           -0.128868   0.250564  -0.514    0.607    
## ShelveLocGood    4.859041   0.260701  18.638  < 2e-16 ***
## ShelveLocMedium  1.906622   0.214144   8.903  < 2e-16 ***
## Price           -0.057163   0.003696 -15.467  < 2e-16 ***
## Income           0.013750   0.003136   4.384 1.50e-05 ***
## Advertising      0.111351   0.017968   6.197 1.46e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.738 on 392 degrees of freedom
## Multiple R-squared:  0.6281, Adjusted R-squared:  0.6214 
## F-statistic: 94.56 on 7 and 392 DF,  p-value: < 2.2e-16

You can see for yourself the change in the r square. From model 2 to model 3 there is a 26 point increase in r square just as we calculated manually. From model 3 to model 4 there is a 3 point increase in r square. The purpose of the anova() analysis was determined if the significance of the change meet a statistical criterion, The lm() function reports a change but not the significance of it.

Conclusion

Hierarchical regression is just another potential tool for the statistical researcher. It provides you with a way to develop several models and compare the results based on any potential improvement in the r square.

Research Questions, Variables, and Statistics

Working with students over the years has led me to the conclusion that often students do not understand the connection between variables, quantitative research questions and the statistical tools

used to answer these questions. In other words, students will take statistics and pass the class. Then they will take research methods, collect data, and have no idea how to analyze the data even though they have the necessary skills in statistics to succeed.


This means that the students have a theoretical understanding of statistics but struggle in the application of it. In this post, we will look at some of the connections between research questions and statistics.

Variables

Variables are important because how they are measured affects the type of question you can ask and get answers to. Students often have no clue how they will measure a variable and therefore have no idea how they will answer any research questions they may have.

Another aspect that can make this confusing is that many variables can be measured more than one way. Sometimes the variable “salary” can be measured in a continuous manner or in a categorical manner. The superiority of one or the other depends on the goals of the research.

It is critical to support students to have a thorough understanding of variables in order to support their research.

Types of Research Questions

In general, there are two types of research questions. These two types are descriptive and relational questions. Descriptive questions involve the use of descriptive statistic such as the mean, median, mode, skew, kurtosis, etc. The purpose is to describe the sample quantitatively with numbers (ie the average height is 172cm) rather than relying on qualitative descriptions of it (ie the people are tall).

Below are several example research questions that are descriptive in nature.

  1. What is the average height of the participants in the study?
  2. What proportion of the sample is passed the exam?
  3. What are the respondents perceptions towards the cafeteria?

These questions are not intellectually sophisticated but they are all answerable with descriptive statistical tools. Question 1 can be answered by calculating the mean. Question 2 can be answered by determining how many passed the exam and dividing by the total sample size. Question 3 can be answered by calculating the mean of all the survey items that are used to measure respondents perception of the cafeteria.

Understanding the link between research question and statistical tool is critical. However, many people seem to miss the connection between the type of question and the tools to use.

Relational questions look for the connection or link between variables. Within this type there are two sub-types. Comparison question involve comparing groups. The other sub-type is called relational or an association question.

Comparison questions involve comparing groups on a continuous variable. For example, comparing men and women by height. What you want to know is whether there is a difference in the height of men and women. The comparison here is trying to determine if gender is related to height. Therefore, it is looking for a relationship just not in the way that many student understand. Common comparison questions include the following.male

  1. Is there a difference in height by gender among the participants?
  2. Is there a difference in reading scores by grade level?
  3. Is there a difference in job satisfaction in based on major?

Each of these questions can be answered using ANOVA or if we want to get technical and there are only two groups (ie gender) we can use t-test. This is a broad overview and does not include the complexities of one-sample test and or paired t-test.

Relational or association question involve continuous variables primarily. The goal is to see how variables move together. For example, you may look for the relationship between height and weight of students. Common questions include the following.

  1.  Is there a relationship between height and weight?
  2. Does height and show size explain weight?

Questions 1 can be answered by calculating the correlation. Question 2 requires the use of linear regression in order to answer the question.

Conclusion

The challenging as a teacher is showing the students the connection between statistics and research questions from the real world. It takes time for students to see how the question inspire the type of statistical tool to use. Understanding this is critical because it helps to frame the possibilities of what to do in research based on the statistical knowledge one has.

Cross-Validation in Python

A common problem in machine learning is data quality. In other words, if the data is bad the model will be bad even if it is designed using best practices. Below is a short of some possible problems with data

  • Sample size is to small-Hurts all algorithms
  • Sample size too big-Hurts complex algorithms
  • Wrong data-Hurts all  algorithms
  • Too many variables-Hurts complex algorithms

Naturally, this list is not exhaustive. Whenever some of the above situations take place it can lead to a model that has bias or variance. Bias takes place when the model highly over and under estimates values. This is common in regression when the relationship among the variables is not linear. The linear line that is developed by the  model works sometimes but is often erroneous.

Variance is when the model is too sensitive to the characteristics of the training data. This means that the model develops a complex way to classify or performs regression that does not generalize to other datasets

One solution to addressing these problems is the use of cross-validation. Cross-validation involves dividing the training set into several folds. For example, you may divide the data into 10 folds. With 9 folds you train the data and with the 10rh fold you test it. You then calculate the average prediction or classification of the ten test folds. This method is commonly called k-folds cross-validation. This process helps to stabilize the results of the final model. We will now look at how to do this using Python.

Data Preparation

We will develop a regression model using the PSID dataset. Our goal will be to predict earnings based on the other variables in the dataset. Below is some initial code.

import pandas as pd
import numpy as np
from pydataset import data
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score

We now need to load the dataset PSID. When this is done, there are several things we also need to.

  • We have to drop all NA’s in the dataset
  • We also need to convert the “married” variable to a dummy variable.

Below  is the code for completing these steps

df=data('PSID').dropna()
df.loc[df.married!= 'married', 'married'] = 0
df.loc[df.married== 'married','married'] = 1
df['married'] = df['married'].astype(int)
df['marry']=df.married

The code above loads the data while dropping the NAs. We then use the .loc function to make everyone who is not married a 0 and everyone who is married a 1. This variable is then converted to an integer using the .astype function. Lastly, we make a new variable called ‘marry’ and store our data there.

There is one other problem we need to address. In the ‘kids’ and the ‘educatn’ variable are values of 98 and 99. In the original survey, these responses meant that the person did not want to say how man kids or how much education they had or that they did not know. We  will remove these individuals from the sample using the code below.

df.drop(df.loc[df['kids']>90].index, inplace=True)
df.drop(df.loc[df['educatn']>90].index, inplace=True)

The code above tells Python to remove in values greater than 90. With this We can now make are dataset that includes the independent variables and the dataset that contains the dependent variable.

X=df[['age','educatn','hours','kids','marry']]
y=df['earnings']

Model Development

We are now going to make several models and use the mean squared error as our way of comparing them. The first model will use all of the data. The second model will use the training data. The  third model will use cross-validation. Below is the code for the first model that uses all of the data,

regression=LinearRegression()
regression.fit(X,y)
first_model=(mean_squared_error(y_true=y,y_pred=regression.predict(X)))
print(first_model)
138544429.96275884

For the second model, we first need to make our train and test sets. Then we will run our model.  The code is below.

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=.3,random_state=5)
regression.fit(X_train,y_train)
second_model=(mean_squared_error(y_true=y_train,y_pred=regression.predict(X_train)))
print(second_model)
148286805.4129756

You can see that the number are somewhat different. This is to be expected when dealing with different sample sizes. With cross validation using the full dataset we get results similar to the first model we developed. This is done through an instance of the KFold function. For KFold we want 10 folds, we want to shuffle the data, and set the seed.

The other function we need is the cross_val_score function. In this function, we set the type of model, the data we will use, the metric for evaluation, and the characteristics of the type of cross-validation. Once this is done we print the mean and standard deviation of the fold results. Below is the code.

crossvalidation=KFold(n_splits=10,shuffle=True,random_state=1)
scores=cross_val_score(regression,X,y,scoring='neg_mean_squared_error',cv=crossvalidation,n_jobs=1)
print(len(scores),np.mean(np.abs(scores)),np.std(scores))
10 138817648.05153447 35451961.12217143

These numbers are closer to what is expected from the dataset. Despite the fact that we didn’t use all the data at the same time. You can also run these results on the training set as well for additional comparison.

Conclusion

This post provides an example of cross-validation in Python. The use of cross-validation helps to stabilize the results that ma come from your model. With increase stability comes increased confidence in your models ability to generalize to other datasets.

Shaping the Results of a Research Paper

Writing the results of a research paper is difficult. As a researcher, you have to try and figure out if you answered the question. In addition, you have to figure out what information is important enough to share. As such it is easy to get stuck at this stage of the research experience. Below are some ideas to help with speeding up this process.

Consider the Order of the Answers

This may seem obvious but probably the best advice I could give a student when writing their results section is to be sure to answer their questions in the order they presented them in the introduction of their study. This helps with cohesion and coherency. The reader is anticipating answers to these questions and they often subconsciously remember the order the questions came in.

If a student answers the questions out of order it can be jarring for the reader. When this happens the reader starts to double check what the questions were and they begin to second-guess their understanding of the paper which reflects poorly on the writer. An analogy would be that if you introduce three of your friends to your parents you might share each person’s name and then you might go back and share a little bit of personal information about each friend. When we do this we often go in order 1st 2nd 3rd friend and then going back and talking about the 1st friend. The same courtesy should apply when answering research questions in the results section. Whoever was first is shared first etc.

Consider how to Represent the Answers

Another aspect to consider is the presentation of the answers. Should everything be in text? What about the use of visuals and tables?  The answers depend on several factors

  • If you have a small amount of information to share writing in paragraphs is practical. Defining small depends on how much space you have to write as well but generally anything more than five ideas should be placed in a table and referred too.
  • Tables are for sharing large amounts of information. If an answer to a research question requires more than five different pieces of information a table may be best. You can extract really useful information from a table and place it directly in paragraphs while referring the reader to the table for even more information.
  • Visuals such as graphs and plots are not used as frequently in research papers as I would have thought. This may be because they take up so much space in articles that usually have page limits. In addition, readers of an academic journal are pretty good at visually results mentally based on numbers that can be placed in a table. Therefore, visuals are most appropriate for presentations and writing situations in which there are fewer constraints on the length of the document such as a thesis or dissertation.

Know when to Interpret

Sometimes I have had students try to explain the results while presenting them. I cannot say this is wrong, however, it can be confusing. The reason it is so confusing is that the student is trying to do two things at the same time which are present the results and interpret them. This would be ok in a presentation and even expected but when someone is reading a paper it is difficult to keep two separate threads of thought going at the same time.  Therefore, the meaning or interpretation of the results should be saved for the Discussion Conclusion section.

Conclusion

Presenting the results is in many ways the high point of a research experience. It is not easy to take numerical results and try to capture the useful information clearly. As such, the advice given here is intending to help support this experience

Tips for Writing a Quantitative Review of Literature

Writing a review of literature can be challenging for students. The purpose here is to try and synthesize a huge amount of information and to try and communicate it clearly to someone who has not read what you have read.

From my experience working with students, I have developed several tips that help them to make faster decisions and to develop their writing as well.

Remember the  Purpose

Often a student will collect as many articles as possible and try to throw them all together to make a review of the literature. This naturally leads to problems of the paper sounded like a shopping list of various articles. Neither interesting nor coherent.

Instead, when writing a review of literature a student should keep in mind the question

What do my readers need to know in order to understand my study?

This is a foundational principle when writing. Readers don’t need to know everything only what they need to know to appreciate the study they are ready. An extension of this is that different readers need to know different things. As such, there is always a contextual element to framing a review of the literature.

Consider the Format

When working with a student, I always recommend the following format to get there writing started.

For each major variable in your study do the following…

  1. Define it
  2. Provide examples or explain theories about it
  3. Go through relevant studies thematically

Definition

There first thing that needs to be done is to provide a definition of the construct. This is important because many constructs are defined many different ways. This can lead to confusion if the reader is thinking one definition and the writer is thinking another.

Examples and Theories

Step 2 is more complex. After a definition is provided the student can either provide an example of what this looks like in the real world and or provide more information in regards to theories related to the construct.

Sometimes examples are useful. For example, if writing a paper on addiction it would be useful to not only define it but also to provide examples of the symptoms of addiction. The examples help the reader to see what used to be an abstract definition in the real world.

Theories are important for providing a deeper explanation of a construct. Theories tend to be highly abstract and often do not help a reader to understand the construct better. One benefit of theories is that they provide a historical background of where the construct came from and can be used to develop the significance of the study as the student tries to find some sort of gap to explore in their own paper.

Often it can be beneficial to include both examples and theories as this demonstrates stronger expertise in the subject matter. In theses and dissertations, both are expected whenever possible. However, for articles space limitations and knowing the audience affects the inclusion of both.

Relevant Studies

The relevant studies section is similar breaking news on CNN. The relevant studies should generally be newer. In the social sciences, we are often encouraged to look at literature from the last five years, perhaps ten years in some cases. Generally, readers want to know what has happened recently as experience experts are familiar with older papers. This rule does not apply as strictly to theses and dissertations.

Once recent literature has been found the student needs to organize it thematically. The reason for a thematic organization is that the theme serves as the main idea of the section and the studies themselves serve as the supporting details. This structure is surprisingly clear for many readers as the predictable nature allows the reader to focus on content rather than on trying to figure out what the author is tiring to say. Below is an example

There are several challenges with using technology in class(ref, 2003; ref 2010). For example, Doe (2009) found that technology can be unpredictable in the classroom. James (2010) found that like of training can lead some teachers to resent having to use new technology

The main idea here is “challenges with technology.” The supporting details are Doe (2009) and James (2010). This concept of themes is much more complex than this and can include several paragraphs and or pages.

Conclusion

This process really cuts down on the confusion of students writing. For stronger students, they can be free to do what they want. However, many students require structure and guidance when the first begin writing research papers

Subset Selection Regression

There are many different ways in which the variables of a regression model can be selected. In this post, we look at several common ways in which to select variables or features for a regression model. In particular, we look at the following.

  • Best subset regression
  • Stepwise selection

Best Subset Regression

Best subset regression fits a regression model for every possible combination of variables. The “best” model can be selected based on such criteria as the adjusted r-square, BIC (Bayesian Information Criteria), etc.

The primary drawback to best subset regression is that it becomes impossible to compute the results when you have a large number of variables. Generally, when the number of variables exceeds 40 best subset regression becomes too difficult to calculate.

Stepwise Selection

Stepwise selection involves adding or taking away one variable at a time from a regression model. There are two forms of stepwise selection and they are forward and backward selection.

In forward selection, the computer starts with a null model ( a model that calculates the mean) and adds one variable at a time to the model. The variable chosen is the one the provides the best improvement to the model fit. This process reduces greatly the number of models that need to be fitted in comparison to best subset regression.

Backward selection starts the full model and removes one variable at a time based on which variable improves the model fit the most. The main problem with either forward or backward selection is that the best model may not always be selected in this process. In addition, backward selection must have a sample size that is larger than the number of variables.

Deciding Which to Choose

Best subset regression is perhaps most appropriate when you have a small number of variables to develop a model with, such as less than 40. When the number of variables grows forward or backward selection are appropriate. If the sample size is small forward selection may be a better choice. However, if the sample size is large as in the number of examples is greater than the number of variables it is now possible to use backward selection.

Conclusion

The examples here are some of the most basic ways to develop a regression model. However, these are not the only ways in which this can be done. What these examples provide is an introduction to regression model development. In addition, these models provide some sort of criteria for the addition or removal of a variable based on statistics rather than intuition.

K Nearest Neighbor in R

K-nearest neighbor is one of many nonlinear algorithms that can be used in machine learning. By non-linear I mean that a linear combination of the features or variables is not needed in order to develop decision boundaries. This allows for the analysis of data that naturally does not meet the assumptions of linearity.

KNN is also known as a “lazy learner”. This means that there are known coefficients or parameter estimates. When doing regression we always had coefficient outputs regardless of the type of regression (ridge, lasso, elastic net, etc.). What KNN does instead is used K nearest neighbors to give a label to an unlabeled example. Our job when using KNN is to determine the number of K neighbors to use that is most accurate based on the different criteria for assessing the models.

In this post, we will develop a KNN model using the “Mroz” dataset from the “Ecdat” package. Our goal is to predict if someone lives in the city based on the other predictor variables. Below is some initial code.

library(class);library(kknn);library(caret);library(corrplot)
library(reshape2);library(ggplot2);library(pROC);library(Ecdat)
data(Mroz)
str(Mroz)
## 'data.frame':    753 obs. of  18 variables:
##  $ work      : Factor w/ 2 levels "yes","no": 2 2 2 2 2 2 2 2 2 2 ...
##  $ hoursw    : int  1610 1656 1980 456 1568 2032 1440 1020 1458 1600 ...
##  $ child6    : int  1 0 1 0 1 0 0 0 0 0 ...
##  $ child618  : int  0 2 3 3 2 0 2 0 2 2 ...
##  $ agew      : int  32 30 35 34 31 54 37 54 48 39 ...
##  $ educw     : int  12 12 12 12 14 12 16 12 12 12 ...
##  $ hearnw    : num  3.35 1.39 4.55 1.1 4.59 ...
##  $ wagew     : num  2.65 2.65 4.04 3.25 3.6 4.7 5.95 9.98 0 4.15 ...
##  $ hoursh    : int  2708 2310 3072 1920 2000 1040 2670 4120 1995 2100 ...
##  $ ageh      : int  34 30 40 53 32 57 37 53 52 43 ...
##  $ educh     : int  12 9 12 10 12 11 12 8 4 12 ...
##  $ wageh     : num  4.03 8.44 3.58 3.54 10 ...
##  $ income    : int  16310 21800 21040 7300 27300 19495 21152 18900 20405 20425 ...
##  $ educwm    : int  12 7 12 7 12 14 14 3 7 7 ...
##  $ educwf    : int  7 7 7 7 14 7 7 3 7 7 ...
##  $ unemprate : num  5 11 5 5 9.5 7.5 5 5 3 5 ...
##  $ city      : Factor w/ 2 levels "no","yes": 1 2 1 1 2 2 1 1 1 1 ...
##  $ experience: int  14 5 15 6 7 33 11 35 24 21 ...

We need to remove the factor variable “work” as KNN cannot use factor variables. After this, we will use the “melt” function from the “reshape2” package to look at the variables when divided by whether the example was from the city or not.

Mroz$work<-NULL
mroz.melt<-melt(Mroz,id.var='city')
Mroz_plots<-ggplot(mroz.melt,aes(x=city,y=value))+geom_boxplot()+facet_wrap(~variable, ncol = 4)
Mroz_plots

1

From the plots, it appears there are no differences in how the variable act whether someone is from the city or not. This may be a flag that classification may not work.

We now need to scale our data otherwise the results will be inaccurate. Scaling might also help our box-plots because everything will be on the same scale rather than spread all over the place. To do this we will have to temporarily remove our outcome variable from the data set because it’s a factor and then reinsert it into the data set. Below is the code.

mroz.scale<-as.data.frame(scale(Mroz[,-16]))
mroz.scale$city<-Mroz$city

We will now look at our box-plots a second time but this time with scaled data.

mroz.scale.melt<-melt(mroz.scale,id.var="city")
mroz_plot2<-ggplot(mroz.scale.melt,aes(city,value))+geom_boxplot()+facet_wrap(~variable, ncol = 4)
mroz_plot2

1

This second plot is easier to read but there is still little indication of difference.

We can now move to checking the correlations among the variables. Below is the code

mroz.cor<-cor(mroz.scale[,-17])
corrplot(mroz.cor,method = 'number')

1.png

There is a high correlation between husband’s age (ageh) and wife’s age (agew). Since this algorithm is non-linear this should not be a major problem.

We will now divide our dataset into the training and testing sets

set.seed(502)
ind=sample(2,nrow(mroz.scale),replace=T,prob=c(.7,.3))
train<-mroz.scale[ind==1,]
test<-mroz.scale[ind==2,]

Before creating a model we need to create a grid. We do not know the value of k yet so we have to run multiple models with different values of k in order to determine this for our model. As such we need to create a ‘grid’ using the ‘expand.grid’ function. We will also use cross-validation to get a better estimate of k as well using the “trainControl” function. The code is below.

grid<-expand.grid(.k=seq(2,20,by=1))
control<-trainControl(method="cv")

Now we make our model,

knn.train<-train(city~.,train,method="knn",trControl=control,tuneGrid=grid)
knn.train
## k-Nearest Neighbors 
## 
## 540 samples
##  16 predictors
##   2 classes: 'no', 'yes' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 487, 486, 486, 486, 486, 486, ... 
## Resampling results across tuning parameters:
## 
##   k   Accuracy   Kappa    
##    2  0.6000095  0.1213920
##    3  0.6368757  0.1542968
##    4  0.6424325  0.1546494
##    5  0.6386252  0.1275248
##    6  0.6329998  0.1164253
##    7  0.6589619  0.1616377
##    8  0.6663344  0.1774391
##    9  0.6663681  0.1733197
##   10  0.6609510  0.1566064
##   11  0.6664018  0.1575868
##   12  0.6682199  0.1669053
##   13  0.6572111  0.1397222
##   14  0.6719586  0.1694953
##   15  0.6571425  0.1263937
##   16  0.6664367  0.1551023
##   17  0.6719573  0.1588789
##   18  0.6608811  0.1260452
##   19  0.6590979  0.1165734
##   20  0.6609510  0.1219624
## 
## Accuracy was used to select the optimal model using  the largest value.
## The final value used for the model was k = 14.

R recommends that k = 16. This is based on a combination of accuracy and the kappa statistic. The kappa statistic is a measurement of the accuracy of a model while taking into account chance. We don’t have a model in the sense that we do not use the ~ sign like we do with regression. Instead, we have a train and a test set a factor variable and a number for k. This will make more sense when you see the code. Finally, we will use this information on our test dataset. We will then look at the table and the accuracy of the model.

knn.test<-knn(train[,-17],test[,-17],train[,17],k=16) #-17 removes the dependent variable 'city
table(knn.test,test$city)
##         
## knn.test  no yes
##      no   19   8
##      yes  61 125
prob.agree<-(15+129)/213
prob.agree
## [1] 0.6760563

Accuracy is 67% which is consistent with what we found when determining the k. We can also calculate the kappa. This done by calculating the probability and then do some subtraction and division. We already know the accuracy as we stored it in the variable “prob.agree” we now need the probability that this is by chance. Lastly, we calculate the kappa.

prob.chance<-((15+4)/213)*((15+65)/213)
kap<-(prob.agree-prob.chance)/(1-prob.chance)
kap
## [1] 0.664827

A kappa of .66 is actually good.

The example we just did was with unweighted k neighbors. There are times when weighted neighbors can improve accuracy. We will look at three different weighing methods. “Rectangular” is unweighted and is the one that we used. The other two are “triangular” and “epanechnikov”. How these calculate the weights is beyond the scope of this post. In the code below the argument “distance” can be set to 1 for Euclidean and 2 for absolute distance.

kknn.train<-train.kknn(city~.,train,kmax = 25,distance = 2,kernel = c("rectangular","triangular",
                                                                      "epanechnikov"))
plot(kknn.train)

1.png

kknn.train
## 
## Call:
## train.kknn(formula = city ~ ., data = train, kmax = 25, distance = 2,     kernel = c("rectangular", "triangular", "epanechnikov"))
## 
## Type of response variable: nominal
## Minimal misclassification: 0.3277778
## Best kernel: rectangular
## Best k: 14

If you look at the plot you can see which value of k is the best by looking at the point that is the lowest on the graph which is right before 15. Looking at the legend it indicates that the point is the “rectangular” estimate which is the same as unweighted. This means that the best classification is unweighted with a k of 14. Although it recommends a different value for k our misclassification was about the same.

Conclusion

In this post, we explored both weighted and unweighted KNN. This algorithm allows you to deal with data that does not meet the assumptions of regression by ignoring the need for parameters. However, because there are no numbers really attached to the results beyond accuracy it can be difficult to explain what is happening in the model to people. As such, perhaps the biggest drawback is communicating results when using KNN.

Data Science Research Questions

Developing research questions is an absolute necessity in completing any research project. The questions you ask help to shape the type of analysis that you need to conduct.

The type of questions you ask in the context of analytics and data science are similar to those found in traditional quantitative research. Yet data science, like any other field, has its own distinct traits.

In this post, we will look at six different types of questions that are used frequently in the context of the field of data science. The six questions are…

  1. Descriptive
  2. Exploratory/Inferential
  3. Predictive
  4. Causal
  5. Mechanistic

Understanding the types of question that can be asked will help anyone involved in data science to determine what exactly it is that they want to know.

Descriptive

A descriptive question seeks to describe a characteristic of the dataset. For example, if I collect the GPA of 100 university student I may want to what the average GPA of the students is. Seeking the average is one example of a descriptive question.

With descriptive questions, there is no need for a hypothesis as you are not trying to infer, establish a relationship, or generalize to a broader context. You simply want to know a trait of the dataset.

Exploratory/Inferential

Exploratory questions seek to identify things that may be “interesting” in the dataset. Examples of things that may be interesting include trends, patterns, and or relationships among variables.

Exploratory questions generate hypotheses. This means that they lead to something that may be more formal questioned and tested. For example, if you have GPA and hours of sleep for university students. You may explore the potential that there is a relationship between these two variables.

 

Inferential questions are an extension of exploratory questions. What this means is that the exploratory question is formally tested by developing an inferential question. Often, the difference between an exploratory and inferential question is the following

  1. Exploratory questions are usually developed first
  2. Exploratory questions generate inferential questions
  3. Inferential questions are tested often on a different dataset from exploratory questions

In our example, if we find a relationship between GPA and sleep in our dataset. We may test this relationship in a different, perhaps larger dataset. If the relationship holds we can then generalize this to the population of the study.

Causal

Causal questions address if a change in one variable directly affects another. In analytics, A/B testing is one form of data collection that can be used to develop causal questions. For example, we may develop two version of a website and see which one generates more sales.

In this example, the type of website is the independent variable and sales is the dependent variable. By controlling the type of website people see we can see if this affects sales.

Mechanistic 

Mechanistic questions deal with how one variable affects another. This is different from causal questions that focus on if one variable affects another. Continuing with the website example, we may take a closer look at the two different websites and see what it was about them that made one more succesful in generating sales. It may be that one had more banners than another or fewer pictures. Perhaps there were different products offered on the home page.

All of these different features, of course, require data that helps to explain what is happening. This leads to an important point that the questions that can be asked are limited by the available data. You can’t answer a question that does not contain data that may answer it.

Conclusion

Answering questions is essential what research is about. In order to do this, you have to know what your questions are. This information will help you to decide on the analysis you wish to conduct. Familiarity with the types of research questions that are common in data science can help you to approach and complete analysis much faster than when this is unclear

Linear VS Quadratic Discriminant Analysis in R

In this post, we will look at linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). Discriminant analysis is used when the dependent variable is categorical. Another commonly used option is logistic regression but there are differences between logistic regression and discriminant analysis. Both LDA and QDA are used in situations in which there is a clear separation between the classes you want to predict. If the categories are fuzzier logistic regression is often the better choice.

For our example, we will use the “Mathlevel” dataset found in the “Ecdat” package. Our goal will be to predict the sex of a respondent based on SAT math score, major, foreign language proficiency, as well as the number of math, physic, and chemistry classes a respondent took. Below is some initial code to start our analysis.

library(MASS);library(Ecdat)
data("Mathlevel")

The first thing we need to do is clean up the data set. We have to remove any missing data in order to run our model. We will create a dataset called “math” that has the “Mathlevel” dataset but with the “NA”s removed use the “na.omit” function. After this, we need to set our seed for the purpose of reproducibility using the “set.seed” function. Lastly, we will split the data using the “sample” function using a 70/30 split. The training dataset will be called “math.train” and the testing dataset will be called “math.test”. Below is the code

math<-na.omit(Mathlevel)
set.seed(123)
math.ind<-sample(2,nrow(math),replace=T,prob = c(0.7,0.3))
math.train<-math[math.ind==1,]
math.test<-math[math.ind==2,]

Now we will make our model and it is called “lda.math” and it will include all available variables in the “math.train” dataset. Next, we will check the results by calling the model. Finally, we will examine the plot to see how our model is doing. Below is the code.

lda.math<-lda(sex~.,math.train)
lda.math
## Call:
## lda(sex ~ ., data = math.train)
## 
## Prior probabilities of groups:
##      male    female 
## 0.5986079 0.4013921 
## 
## Group means:
##        mathlevel.L mathlevel.Q mathlevel.C mathlevel^4 mathlevel^5
## male   -0.10767593  0.01141838 -0.05854724   0.2070778  0.05032544
## female -0.05571153  0.05360844 -0.08967303   0.2030860 -0.01072169
##        mathlevel^6      sat languageyes  majoreco  majoross   majorns
## male    -0.2214849 632.9457  0.07751938 0.3914729 0.1472868 0.1782946
## female  -0.2226767 613.6416  0.19653179 0.2601156 0.1907514 0.2485549
##          majorhum mathcourse physiccourse chemistcourse
## male   0.05426357   1.441860    0.7441860      1.046512
## female 0.07514451   1.421965    0.6531792      1.040462
## 
## Coefficients of linear discriminants:
##                       LD1
## mathlevel.L    1.38456344
## mathlevel.Q    0.24285832
## mathlevel.C   -0.53326543
## mathlevel^4    0.11292817
## mathlevel^5   -1.24162715
## mathlevel^6   -0.06374548
## sat           -0.01043648
## languageyes    1.50558721
## majoreco      -0.54528930
## majoross       0.61129797
## majorns        0.41574298
## majorhum       0.33469586
## mathcourse    -0.07973960
## physiccourse  -0.53174168
## chemistcourse  0.16124610
plot(lda.math,type='both')

1.png

Calling “lda.math” gives us the details of our model. It starts be indicating the prior probabilities of someone being male or female. Next is the means for each variable by sex. The last part is the coefficients of the linear discriminants. Each of these values is used to determine the probability that a particular example is male or female. This is similar to a regression equation.

The plot provides us with densities of the discriminant scores for males and then for females. The output indicates a problem. There is a great deal of overlap between male and females in the model. What this indicates is that there is a lot of misclassification going on as the two groups are not clearly separated. Furthermore, this means that logistic regression is probably a better choice for distinguishing between male and females. However, since this is for demonstrating purposes we will not worry about this.

We will now use the “predict” function on the training set data to see how well our model classifies the respondents by gender. We will then compare the prediction of the model with the actual classification. Below is the code.

math.lda.predict<-predict(lda.math)
math.train$lda<-math.lda.predict$class
table(math.train$lda,math.train$sex)
##         
##          male female
##   male    219    100
##   female   39     73
mean(math.train$lda==math.train$sex)
## [1] 0.6774942

As you can see, we have a lot of misclassification happening. A large amount of false negatives which is a lot of males being classified as female. The overall accuracy is only 59% which is not much better than chance.

We will now conduct the same analysis on the test data set. Below is the code.

lda.math.test<-predict(lda.math,math.test)
math.test$lda<-lda.math.test$class
table(math.test$lda,math.test$sex)
##         
##          male female
##   male     92     43
##   female   23     20
mean(math.test$lda==math.test$sex)
## [1] 0.6292135

As you can see the results are similar. To put it simply, our model is terrible. The main reason is that there is little distinction between males and females as shown in the plot. However, we can see if perhaps a quadratic discriminant analysis will do better

QDA allows for each class in the dependent variable to have its own covariance rather than a shared covariance as in LDA. This allows for quadratic terms in the development of the model. To complete a QDA we need to use the “qda” function from the “MASS” package. Below is the code for the training data set.

math.qda.fit<-qda(sex~.,math.train)
math.qda.predict<-predict(math.qda.fit)
math.train$qda<-math.qda.predict$class
table(math.train$qda,math.train$sex)
##         
##          male female
##   male    215     84
##   female   43     89
mean(math.train$qda==math.train$sex)
## [1] 0.7053364

You can see there is almost no difference. Below is the code for the test data.

math.qda.test<-predict(math.qda.fit,math.test)
math.test$qda<-math.qda.test$class
table(math.test$qda,math.test$sex)
##         
##          male female
##   male     91     43
##   female   24     20
mean(math.test$qda==math.test$sex)
## [1] 0.6235955

Still disappointing. However, in this post, we reviewed linear discriminant analysis as well as learned about the use of quadratic linear discriminant analysis. Both of these statistical tools are used for predicting categorical dependent variables. LDA assumes shared covariance in the dependent variable categories will QDA allows for each category in the dependent variable to have its own variance.

Logistic Regression in R

In this post, we will conduct a logistic regression analysis. Logistic regression is used when you want to predict a categorical dependent variable using continuous or categorical dependent variables. In our example, we want to predict Sex (male or female) when using several continuous variables from the “survey” dataset in the “MASS” package.

library(MASS);library(bestglm);library(reshape2);library(corrplot)
data(survey)
?MASS::survey #explains the variables in the study

The first thing we need to do is remove the independent factor variables from our dataset. The reason for this is that the function that we will use for the cross-validation does not accept factors. We will first use the “str” function to identify factor variables and then remove them from the dataset. We also need to remove in examples that are missing data so we use the “na.omit” function for this. Below is the code

survey$Clap<-NULL
survey$W.Hnd<-NULL
survey$Fold<-NULL
survey$Exer<-NULL
survey$Smoke<-NULL
survey$M.I<-NULL
survey<-na.omit(survey)

We now need to check for collinearity using the “corrplot.mixed” function form the “corrplot” package.

pc<-cor(survey[,2:5])
corrplot.mixed(pc)
corrplot.mixed(pc)

1.png

We have an extreme correlation between “We.Hnd” and “NW.Hnd” this makes sense because people’s hands are normally the same size. Since this blog post is a demonstration of logistic regression we will not worry about this too much.

We now need to divide our dataset into a train and a test set. We set the seed for. First, we need to make a variable that we call “ind” that is randomly assigned 70% of the number of rows of survey 1 and 30% 2. We then subset the “train” dataset by taking all rows that are 1’s based on the “ind” variable and we create the “test” dataset for all the rows that line up with 2 in the “ind” variable. This means our data split is 70% train and 30% test. Below is the code

set.seed(123)
ind<-sample(2,nrow(survey),replace=T,prob = c(0.7,0.3))
train<-survey[ind==1,]
test<-survey[ind==2,]

We now make our model. We use the “glm” function for logistic regression. We set the family argument to “binomial”. Next, we look at the results as well as the odds ratios.

fit<-glm(Sex~.,family=binomial,train)
summary(fit)
## 
## Call:
## glm(formula = Sex ~ ., family = binomial, data = train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.9875  -0.5466  -0.1395   0.3834   3.4443  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -46.42175    8.74961  -5.306 1.12e-07 ***
## Wr.Hnd       -0.43499    0.66357  -0.656    0.512    
## NW.Hnd        1.05633    0.70034   1.508    0.131    
## Pulse        -0.02406    0.02356  -1.021    0.307    
## Height        0.21062    0.05208   4.044 5.26e-05 ***
## Age           0.00894    0.05368   0.167    0.868    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 169.14  on 122  degrees of freedom
## Residual deviance:  81.15  on 117  degrees of freedom
## AIC: 93.15
## 
## Number of Fisher Scoring iterations: 6
exp(coef(fit))
##  (Intercept)       Wr.Hnd       NW.Hnd        Pulse       Height 
## 6.907034e-21 6.472741e-01 2.875803e+00 9.762315e-01 1.234447e+00 
##          Age 
## 1.008980e+00

The results indicate that only height is useful in predicting if someone is a male or female. The second piece of code shares the odds ratios. The odds ratio tell how a one unit increase in the independent variable leads to an increase in the odds of being male in our model. For example, for every one unit increase in height there is a 1.23 increase in the odds of a particular example being male.

We now need to see how well our model does on the train and test dataset. We first capture the probabilities and save them to the train dataset as “probs”. Next we create a “predict” variable and place the string “Female” in the same number of rows as are in the “train” dataset. Then we rewrite the “predict” variable by changing any example that has a probability above 0.5 as “Male”. Then we make a table of our results to see the number correct, false positives/negatives. Lastly, we calculate the accuracy rate. Below is the code.

train$probs<-predict(fit, type = 'response')
train$predict<-rep('Female',123)
train$predict[train$probs>0.5]<-"Male"
table(train$predict,train$Sex)
##         
##          Female Male
##   Female     61    7
##   Male        7   48
mean(train$predict==train$Sex)
## [1] 0.8861789

Despite the weaknesses of the model with so many insignificant variables it is surprisingly accurate at 88.6%. Let’s see how well we do on the “test” dataset.

test$prob<-predict(fit,newdata = test, type = 'response')
test$predict<-rep('Female',46)
test$predict[test$prob>0.5]<-"Male"
table(test$predict,test$Sex)
##         
##          Female Male
##   Female     17    3
##   Male        0   26
mean(test$predict==test$Sex)
## [1] 0.9347826

As you can see, we do even better on the test set with an accuracy of 93.4%. Our model is looking pretty good and height is an excellent predictor of sex which makes complete sense. However, in the next post we will use cross-validation and the ROC plot to further assess the quality of it.

Probability,Odds, and Odds Ratio

In logistic regression, there are three terms that are used frequently but can be confusing if they are not thoroughly explained. These three terms are probability, odds, and odds ratio. In this post, we will look at these three terms and provide an explanation of them.

Probability

Probability is probably (no pun intended) the easiest of these three terms to understand. Probability is simply the likelihood that a certain event will happen.  To calculate the probability in the traditional sense you need to know the number of events and outcomes to find the probability.

Bayesian probability uses prior probabilities to develop a posterior probability based on new evidence. For example, at one point during Super Bowl LI the Atlanta Falcons had a 99.7% chance of winning. This was base don such factors as the number points they were ahead and the time remaining.  As these changed, so did the probability of them winning. yet the Patriots still found a way to win with less than a 1% chance

Bayesian probability was also used for predicting who would win the 2016 US presidential race. It is important to remember that probability is an expression of confidence and not a guarantee as we saw in both examples.

Odds

Odds are the expression of relative probabilities. Odds are calculated using the following equation

probability of the event ⁄ 1 – probability of the event

For example, at one point during Super Bowl LI the odds of the Atlanta Falcons winning were as follows

0.997 ⁄ 1 – 0.997 = 332

This can be interpreted as the odds being 332 to 1! This means that Atlanta was 332 times more likely to win the Super Bowl then loss the Super Bowl.

Odds are commonly used in gambling and this is probably (again no pun intended) where most of us have heard the term before. The odds is just an extension of probabilities and they are most commonly expressed as a fraction such as one in four, etc.

Odds Ratio

A ratio is the comparison of two numbers and indicates how many times one number is contained or contains another number. For example, a ration of boys to girls is 5 to 1 it means that there are five boys for every one girl.

By extension odds ratio is the comparison of two different odds. For example, if the odds of Team A making the playoffs is 45% and the odds of Team B making the playoffs is 35% the odds ratio is calculated as follows.

0.45 ⁄ 0.35 = 1.28

Team A is 1.28 more likely to make the playoffs then Team B.

The value of the odds and the odds ratio can sometimes be the same.  Below is the odds ratio of the Atlanta Falcons winning and the New Patriots winning Super Bowl LI

0.997⁄ 0.003 = 332

As such there is little difference between odds and odds ratio except that odds ratio is the ratio of two odds ratio. As you can tell, there is a lot of confusion about this for the average person. However, understanding these terms is critical to the application of logistic regression.

Best Subset Regression in R

In this post, we will take a look at best subset regression. Best subset regression fits a model for all possible feature or variable combinations and the decision for the most appropriate model is made by the analyst based on judgment or some statistical criteria.

Best subset regression is an alternative to both Forward and Backward stepwise regression. Forward stepwise selection adds one variable at a time based on the lowest residual sum of squares until no more variables continue to lower the residual sum of squares. Backward stepwise regression starts with all variables in the model and removes variables one at a time. The concern with stepwise methods is they can produce biased regression coefficients, conflicting models, and inaccurate confidence intervals.

Best subset regression bypasses these weaknesses of stepwise models by creating all models possible and then allowing you to assess which variables should be included in your final model. The one drawback to best subset is that a large number of variables means a large number of potential models, which can make it difficult to make a decision among several choices.

In this post, we will use the “Fair” dataset from the “Ecdat” package to predict marital satisfaction based on age, Sex, the presence of children, years married, religiosity, education, occupation, and the number of affairs in the past year. Below is some initial code.

library(leaps);library(Ecdat);library(car);library(lmtest)
data(Fair)

We begin our analysis by building the initial model with all variables in it. Below is the code

fit<-lm(rate~.,Fair)
summary(fit)
## 
## Call:
## lm(formula = rate ~ ., data = Fair)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2049 -0.6661  0.2298  0.7705  2.2292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.522875   0.358793   9.819  < 2e-16 ***
## sexmale     -0.062281   0.099952  -0.623  0.53346    
## age         -0.009683   0.007548  -1.283  0.20005    
## ym          -0.019978   0.013887  -1.439  0.15079    
## childyes    -0.206976   0.116227  -1.781  0.07546 .  
## religious    0.042142   0.037705   1.118  0.26416    
## education    0.068874   0.021153   3.256  0.00119 ** 
## occupation  -0.015606   0.029602  -0.527  0.59825    
## nbaffairs   -0.078812   0.013286  -5.932 5.09e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.03 on 592 degrees of freedom
## Multiple R-squared:  0.1405, Adjusted R-squared:  0.1289 
## F-statistic:  12.1 on 8 and 592 DF,  p-value: 4.487e-16

The initial results are already interesting even though the r-square is low. When couples have children the have less marital satisfaction than couples without children when controlling for the other factors and this is the strongest regression weight. In addition, the more education a person has there is an increase in marital satisfaction. Lastly, as the number of affairs increases there is also a decrease in marital satisfaction. Keep in mind that the “rate” variable goes from 1 to 5 with one meaning a terrible marriage to five being a great one. The mean marital satisfaction was 3.52 when controlling for the other variables.

We will now create our subset models. Below is the code.

sub.fit<-regsubsets(rate~.,Fair)
best.summary<-summary(sub.fit)

In the code above we create the sub models using the “regsubsets” function from the “leaps” package and saved it in the variable called “sub.fit”. We then saved the summary of “sub.fit” in the variable “best.summary”. We will use the “best.summary” “sub.fit variables several times to determine which model to use.

There are many different ways to assess the model. We will use the following statistical methods that come with the results from the “regsubset” function.

  • Mallow’ Cp
  • Bayesian Information Criteria

We will make two charts for each of the criteria above. The plot to the left will explain how many features to include in the model. The plot to the right will tell you which variables to include. It is important to note that for both of these methods, the lower the score the better the model. Below is the code for Mallow’s Cp.

par(mfrow=c(1,2))
plot(best.summary$cp)
plot(sub.fit,scale = "Cp")

1

The plot on the left suggests that a four feature model is the most appropriate. However, this chart does not tell me which four features. The chart on the right is read in reverse order. The high numbers are at the bottom and the low numbers are at the top when looking at the y-axis. Knowing this, we can conclude that the most appropriate variables to include in the model are age, children presence, education, and number of affairs. Below are the results using the Bayesian Information Criterion

par(mfrow=c(1,2))
plot(best.summary$bic)
plot(sub.fit,scale = "bic")

1

These results indicate that a three feature model is appropriate. The variables or features are years married, education, and number of affairs. Presence of children was not considered beneficial. Since our original model and Mallow’s Cp indicated that presence of children was significant we will include it for now.

Below is the code for the model based on the subset regression.

fit2<-lm(rate~age+child+education+nbaffairs,Fair)
summary(fit2)
## 
## Call:
## lm(formula = rate ~ age + child + education + nbaffairs, data = Fair)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2172 -0.7256  0.1675  0.7856  2.2713 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.861154   0.307280  12.566  < 2e-16 ***
## age         -0.017440   0.005057  -3.449 0.000603 ***
## childyes    -0.261398   0.103155  -2.534 0.011531 *  
## education    0.058637   0.017697   3.313 0.000978 ***
## nbaffairs   -0.084973   0.012830  -6.623 7.87e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.029 on 596 degrees of freedom
## Multiple R-squared:  0.1352, Adjusted R-squared:  0.1294 
## F-statistic: 23.29 on 4 and 596 DF,  p-value: < 2.2e-16

The results look ok. The older a person is the less satisfied they are with their marriage. If children are present the marriage is less satisfying. The more educated the more satisfied they are. Lastly, the higher the number of affairs indicate less marital satisfaction. However, before we get excited we need to check for collinearity and homoscedasticity. Below is the code

vif(fit2)
##       age     child education nbaffairs 
##  1.249430  1.228733  1.023722  1.014338

No issues with collinearity.For vif values above 5 or 10 indicate a problem. Let’s check for homoscedasticity

par(mfrow=c(2,2))
plot(fit2)

1.jpeg

The normal qqplot and residuals vs leverage plot can be used for locating outliers. The residual vs fitted and the scale-location plot do not look good as there appears to be a pattern in the dispersion which indicates homoscedasticity. To confirm this we will use Breusch-Pagan test from the “lmtest” package. Below is the code

bptest(fit2)
## 
##  studentized Breusch-Pagan test
## 
## data:  fit2
## BP = 16.238, df = 4, p-value = 0.002716

There you have it. Our model violates the assumption of homoscedasticity. However, this model was developed for demonstration purpose to provide an example of subset regression.

Principal Component Analysis in R

This post will demonstrate the use of principal component analysis (PCA). PCA is useful for several reasons. One it allows you place your examples into groups similar to linear discriminant analysis but you do not need to know beforehand what the groups are. Second, PCA is used for the purpose of dimension reduction. For example, if you have 50 variables PCA can allow you to reduce this while retaining a certain threshold of variance. If you are working with a large dataset this can greatly reduce the computational time and general complexity of your models.

Keep in mind that there really is not a dependent variable as this is unsupervised learning. What you are trying to see is how different examples can

be mapped in space based on whatever independent variables are used. For our example, we will use the “Carseats” dataset from the “ISLR”. Our goal is to understand the relationship among the variables when examining the shelve location of the car seat. Below is the initial code to begin the analysis

library(ggplot2)
library(ISLR)
data("Carseats")

We first need to rearrange the data and remove the variables we are not going to use in the analysis. Below is the code.

Carseats1<-Carseats
Carseats1<-Carseats1[,c(1,2,3,4,5,6,8,9,7,10,11)]
Carseats1$Urban<-NULL
Carseats1$US<-NULL

Here is what we did 1. We made a copy of the “Carseats” data called “Careseats1” 2. We rearranged the order of the variables so that the factor variables are at the end. This will make sense later 3.We removed the “Urban” and “US” variables from the table as they will not be a part of our analysis

We will now do the PCA. We need to scale and center our data otherwise the larger numbers will have a much stronger influence on the results than smaller numbers. Fortunately, the “prcomp” function has a “scale” and a “center” argument. We will also use only the first 7 columns for the analysis as “sheveLoc” is not useful for this analysis. If we hadn’t moved “shelveLoc” to the end of the dataframe it would cause some headache. Below is the code.

Carseats.pca<-prcomp(Carseats1[,1:7],scale. = T,center = T)
summary(Carseats.pca)
## Importance of components:
##                           PC1    PC2    PC3    PC4    PC5     PC6     PC7
## Standard deviation     1.3315 1.1907 1.0743 0.9893 0.9260 0.80506 0.41320
## Proportion of Variance 0.2533 0.2026 0.1649 0.1398 0.1225 0.09259 0.02439
## Cumulative Proportion  0.2533 0.4558 0.6207 0.7605 0.8830 0.97561 1.00000

The summary of “Carseats.pca” Tells us how much of the variance each component explains. Keep in mind that the number of components is equal to the number of variables. The “proportion of variance” tells us the contribution each component makes and the “cumulative proportion”.

If your goal is dimension reduction than the number of components to keep depends on the threshold you set. For example, if you need around 90% of the variance you would keep the first 5 components. If you need 95% or more of the variance you would keep the first six. To actually use the components you would take the “Carseats.pca$x” data and move it to your data frame.

Keep in mind that the actual components have no conceptual meaning but is a numerical representation of a combination of several variables that were reduced using PCA to fewer variables such as going from 7 variables to 5 variables.

This means that PCA is great for reducing variables for prediction purpose but is much harder for explanatory studies unless you can explain what the new components represent.

For our purposes, we will keep 5 components. This means that we have reduced our dimensions from 7 to 5 while still keeping almost 90% of the variance. Graphing our results is tricky because we have 5 dimensions but the human mind can only conceptualize 3 at the best and normally 2. As such we will plot the first two components and label them by shelf location using ggplot2. Below is the code

scores<-as.data.frame(Carseats.pca$x)
pcaplot<-ggplot(scores,(aes(PC1,PC2,color=Carseats1$ShelveLoc)))+geom_point()
pcaplot

1.png

From the plot, you can see there is little separation when using the first two components of the PCA analysis. This makes sense as we can only graph to components so we are missing a lot of the variance. However, for demonstration purposes the analysis is complete.

Developing a Data Analysis Plan

It is extremely common for beginners and perhaps even experience researchers to lose track of what they are trying to achieve or do when trying to complete a research project. The open nature of research allows for a multitude of equally acceptable ways to complete a project. This leads to an inability to make a decision and or stay on course when doing research.

One way to reduce and eliminate the roadblock to decision making and focus in research is to develop a plan. In this post, we will look at one version of a data analysis plan.

Data Analysis Plan

A data analysis plan includes many features of a research project in it with a particular emphasis on mapping out how research questions will be answered and what is necessary to answer the question. Below is a sample template of the analysis plan.

analysis-plan-page-001-2

The majority of this diagram should be familiar to someone who has ever done research. At the top, you state the problem, this is the overall focus of the paper. Next, comes the purpose, the purpose is the over-arching goal of a research project.

After purpose comes the research questions. The research questions are questions about the problem that are answerable. People struggle with developing clear and answerable research questions. It is critical that research questions are written in a way that they can be answered and that the questions are clearly derived from the problem. Poor questions means poor or even no answers.

After the research questions, it is important to know what variables are available for the entire study and specifically what variables can be used to answer each research question. Lastly, you must indicate what analysis or visual you will develop in order to answer your research questions about your problem. This requires you to know how you will answer your research questions

Example

Below is an example of a completed analysis plan for  simple undergraduate level research paper

example-analysis-plan-page-001

In the example above, the student wants to understand the perceptions of university students about the cafeteria food quality and their satisfaction with the university. There were four research questions, a demographic descriptive question, a descriptive question about the two main variables, a comparison question, and lastly a relationship question.

The variables available for answering the questions are listed off to the left side. Under that, the student indicates the variables needed to answer each question. For example, the demographic variables of sex, class level, and major are needed to answer the question about the demographic profile.

The last section is the analysis. For the demographic profile, the student found the percentage of the population in each sub group of the demographic variables.

Conclusion

A data analysis plan provides an excellent way to determine what needs to be done to complete a study. It also helps a researcher to clearly understand what they are trying to do and provides a visual for those who the research wants to communicate with about the progress of a study.

Generalized Additive Models in R

In this post, we will learn how to create a generalized additive model (GAM). GAMs are non-parametric generalized linear models. This means that linear predictor of the model uses smooth functions on the predictor variables. As such, you do not need to specify the functional relationship between the response and continuous variables. This allows you to explore the data for potential relationships that can be more rigorously tested with other statistical models

In our example, we will use the “Auto” dataset from the “ISLR” package and use the variables “mpg”,“displacement”,“horsepower”, and “weight” to predict “acceleration”. We will also use the “mgcv” package. Below is some initial code to begin the analysis

library(mgcv)
library(ISLR)
data(Auto)

We will now make the model we want to understand the response of “acceleration” to the explanatory variables of “mpg”,“displacement”,“horsepower”, and “weight”. After setting the model we will examine the summary. Below is the code

model1<-gam(acceleration~s(mpg)+s(displacement)+s(horsepower)+s(weight),data=Auto)
summary(model1)
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## acceleration ~ s(mpg) + s(displacement) + s(horsepower) + s(weight)
## 
## Parametric coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15.54133    0.07205   215.7   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##                   edf Ref.df      F  p-value    
## s(mpg)          6.382  7.515  3.479  0.00101 ** 
## s(displacement) 1.000  1.000 36.055 4.35e-09 ***
## s(horsepower)   4.883  6.006 70.187  < 2e-16 ***
## s(weight)       3.785  4.800 41.135  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =  0.733   Deviance explained = 74.4%
## GCV = 2.1276  Scale est. = 2.0351    n = 392

All of the explanatory variables are significant and the adjust r-squared is .73 which is excellent. edf stands for “effective degrees of freedom”. This modified version of the degree of freedoms is due to the smoothing process in the model. GCV stands for generalized cross-validation and this number is useful when comparing models. The model with the lowest number is the better model.

We can also examine the model visually by using the “plot” function. This will allow us to examine if the curvature fitted by the smoothing process was useful or not for each variable. Below is the code.

plot(model1)

d71839c6-1baf-4886-98dd-7de8eac27855f4402e71-29f4-44e3-a941-3102fea89c78.pngcdbb392a-1d53-4dd0-8350-8b6d65284b00.pngbf28dd7a-d250-4619-bea0-5666e031e991.png

We can also look at a 3d graph that includes the linear predictor as well as the two strongest predictors. This is done with the “vis.gam” function. Below is the code

vis.gam(model1)

2136d310-b3f5-4c78-b166-4f6c4a1d0e12.png

If multiple models are developed. You can compare the GCV values to determine which model is the best. In addition, another way to compare models is with the “AIC” function. In the code below, we will create an additional model that includes “year” compare the GCV scores and calculate the AIC. Below is the code.

model2<-gam(acceleration~s(mpg)+s(displacement)+s(horsepower)+s(weight)+s(year),data=Auto)
summary(model2)
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## acceleration ~ s(mpg) + s(displacement) + s(horsepower) + s(weight) + 
##     s(year)
## 
## Parametric coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15.54133    0.07203   215.8   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##                   edf Ref.df      F p-value    
## s(mpg)          5.578  6.726  2.749  0.0106 *  
## s(displacement) 2.251  2.870 13.757 3.5e-08 ***
## s(horsepower)   4.936  6.054 66.476 < 2e-16 ***
## s(weight)       3.444  4.397 34.441 < 2e-16 ***
## s(year)         1.682  2.096  0.543  0.6064    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =  0.733   Deviance explained = 74.5%
## GCV = 2.1368  Scale est. = 2.0338    n = 392
#model1 GCV
model1$gcv.ubre
##   GCV.Cp 
## 2.127589
#model2 GCV
model2$gcv.ubre
##   GCV.Cp 
## 2.136797

As you can see, the second model has a higher GCV score when compared to the first model. This indicates that the first model is a better choice. This makes sense because in the second model the variable “year” is not significant. To confirm this we will calculate the AIC scores using the AIC function.

AIC(model1,model2)
##              df      AIC
## model1 18.04952 1409.640
## model2 19.89068 1411.156

Again, you can see that model1 s better due to its fewer degrees of freedom and slightly lower AIC score.

Conclusion

Using GAMs is most common for exploring potential relationships in your data. This is stated because they are difficult to interpret and to try and summarize. Therefore, it is normally better to develop a generalized linear model over a GAM due to the difficulty in understanding what the data is trying to tell you when using GAMs.

Generalized Models in R

Generalized linear models are another way to approach linear regression. The advantage of of GLM is that allows the error to follow many different distributions rather than only the normal distribution which is an assumption of traditional linear regression.

Often GLM is used for response or dependent variables that are binary or represent count data. THis post will provide a brief explanation of GLM as well as provide an example.

Key Information

There are three important components to a GLM and they are

  • Error structure
  • Linear predictor
  • Link function

The error structure is the type of distribution you will use in generating the model. There are many different distributions in statistical modeling such as binomial, gaussian, poission, etc. Each distribution comes with certain assumptions that govern their use.

The linear predictor is the sum of the effects of the independent variables. Lastly, the link function determines the relationship between the linear predictor and the mean of the dependent variable. There are many different link functions and the best link function is the one that reduces the residual deviances the most.

In our example, we will try to predict if a house will have air conditioning based on the interactioon between number of bedrooms and bathrooms, number of stories, and the price of the house. To do this, we will use the “Housing” dataset from the “Ecdat” package. Below is some initial code to get started.

library(Ecdat)
data("Housing")

The dependent variable “airco” in the “Housing” dataset is binary. This calls for us to use a GLM. To do this we will use the “glm” function in R. Furthermore, in our example, we want to determine if there is an interaction between number of bedrooms and bathrooms. Interaction means that the two independent variables (bathrooms and bedrooms) influence on the dependent variable (aircon) is not additive, which means that the combined effect of the independnet variables is different than if you just added them together. Below is the code for the model followed by a summary of the results

model<-glm(Housing$airco ~ Housing$bedrooms * Housing$bathrms + Housing$stories + Housing$price, family=binomial)
summary(model)
## 
## Call:
## glm(formula = Housing$airco ~ Housing$bedrooms * Housing$bathrms + 
##     Housing$stories + Housing$price, family = binomial)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.7069  -0.7540  -0.5321   0.8073   2.4217  
## 
## Coefficients:
##                                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)                      -6.441e+00  1.391e+00  -4.632 3.63e-06
## Housing$bedrooms                  8.041e-01  4.353e-01   1.847   0.0647
## Housing$bathrms                   1.753e+00  1.040e+00   1.685   0.0919
## Housing$stories                   3.209e-01  1.344e-01   2.388   0.0170
## Housing$price                     4.268e-05  5.567e-06   7.667 1.76e-14
## Housing$bedrooms:Housing$bathrms -6.585e-01  3.031e-01  -2.173   0.0298
##                                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 681.92  on 545  degrees of freedom
## Residual deviance: 549.75  on 540  degrees of freedom
## AIC: 561.75
## 
## Number of Fisher Scoring iterations: 4

To check how good are model is we need to check for overdispersion as well as compared this model to other potential models. Overdispersion is a measure to determine if there is too much variablity in the model. It is calcualted by dividing the residual deviance by the degrees of freedom. Below is the solution for this

549.75/540
## [1] 1.018056

Our answer is 1.01, which is pretty good because the cutoff point is 1, so we are really close.

Now we will make several models and we will compare the results of them

Model 2

#add recroom and garagepl
model2<-glm(Housing$airco ~ Housing$bedrooms * Housing$bathrms + Housing$stories + Housing$price + Housing$recroom + Housing$garagepl, family=binomial)
summary(model2)
## 
## Call:
## glm(formula = Housing$airco ~ Housing$bedrooms * Housing$bathrms + 
##     Housing$stories + Housing$price + Housing$recroom + Housing$garagepl, 
##     family = binomial)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.6733  -0.7522  -0.5287   0.8035   2.4239  
## 
## Coefficients:
##                                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)                      -6.369e+00  1.401e+00  -4.545 5.51e-06
## Housing$bedrooms                  7.830e-01  4.391e-01   1.783   0.0745
## Housing$bathrms                   1.702e+00  1.047e+00   1.626   0.1039
## Housing$stories                   3.286e-01  1.378e-01   2.384   0.0171
## Housing$price                     4.204e-05  6.015e-06   6.989 2.77e-12
## Housing$recroomyes                1.229e-01  2.683e-01   0.458   0.6470
## Housing$garagepl                  2.555e-03  1.308e-01   0.020   0.9844
## Housing$bedrooms:Housing$bathrms -6.430e-01  3.054e-01  -2.106   0.0352
##                                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 681.92  on 545  degrees of freedom
## Residual deviance: 549.54  on 538  degrees of freedom
## AIC: 565.54
## 
## Number of Fisher Scoring iterations: 4
#overdispersion calculation
549.54/538
## [1] 1.02145

Model 3

model3<-glm(Housing$airco ~ Housing$bedrooms * Housing$bathrms + Housing$stories + Housing$price + Housing$recroom + Housing$fullbase + Housing$garagepl, family=binomial)
summary(model3)
## 
## Call:
## glm(formula = Housing$airco ~ Housing$bedrooms * Housing$bathrms + 
##     Housing$stories + Housing$price + Housing$recroom + Housing$fullbase + 
##     Housing$garagepl, family = binomial)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.6629  -0.7436  -0.5295   0.8056   2.4477  
## 
## Coefficients:
##                                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)                      -6.424e+00  1.409e+00  -4.559 5.14e-06
## Housing$bedrooms                  8.131e-01  4.462e-01   1.822   0.0684
## Housing$bathrms                   1.764e+00  1.061e+00   1.662   0.0965
## Housing$stories                   3.083e-01  1.481e-01   2.082   0.0374
## Housing$price                     4.241e-05  6.106e-06   6.945 3.78e-12
## Housing$recroomyes                1.592e-01  2.860e-01   0.557   0.5778
## Housing$fullbaseyes              -9.523e-02  2.545e-01  -0.374   0.7083
## Housing$garagepl                 -1.394e-03  1.313e-01  -0.011   0.9915
## Housing$bedrooms:Housing$bathrms -6.611e-01  3.095e-01  -2.136   0.0327
##                                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 681.92  on 545  degrees of freedom
## Residual deviance: 549.40  on 537  degrees of freedom
## AIC: 567.4
## 
## Number of Fisher Scoring iterations: 4
#overdispersion calculation
549.4/537
## [1] 1.023091

Now we can assess the models by using the “anova” function with the “test” argument set to “Chi” for the chi-square test.

anova(model, model2, model3, test = "Chi")
## Analysis of Deviance Table
## 
## Model 1: Housing$airco ~ Housing$bedrooms * Housing$bathrms + Housing$stories + 
##     Housing$price
## Model 2: Housing$airco ~ Housing$bedrooms * Housing$bathrms + Housing$stories + 
##     Housing$price + Housing$recroom + Housing$garagepl
## Model 3: Housing$airco ~ Housing$bedrooms * Housing$bathrms + Housing$stories + 
##     Housing$price + Housing$recroom + Housing$fullbase + Housing$garagepl
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       540     549.75                     
## 2       538     549.54  2  0.20917   0.9007
## 3       537     549.40  1  0.14064   0.7076

The results of the anova indicate that the models are all essentially the same as there is no statistical difference. The only criteria on which to select a model is the measure of overdispersion. The first model has the lowest rate of overdispersion and so is the best when using this criteria. Therefore, determining if a hous has air conditioning depends on examining number of bedrooms and bathrooms simultenously as well as the number of stories and the price of the house.

Conclusion

The post explained how to use and interpret GLM in R. GLM can be used primarilyy for fitting data to disrtibutions that are not normal.

Understanding Decision Trees

Decision trees are yet another method of machine learning that is used for classifying outcomes. Decision trees are very useful for, as you can guess, making decisions based on the characteristics of the data.

In this post, we will discuss the following

  • Physical traits of decision trees
  • How decision trees work
  • Pros and cons of decision trees

Physical Traits of a Decision Tree

Decision trees consist of what is called a tree structure. The tree structure consists of a root node, decision nodes, branches and leaf nodes.

A root node is an initial decision made in the tree. This depends on which feature the algorithm selects first.

Following the root node, the tree splits into various branches. Each branch leads to an additional decision node where the data is further subdivided. When you reach the bottom of a tree at the terminal node(s) these are also called leaf nodes.

How Decision Trees Work

Decision trees use a heuristic called recursive partitioning. What this does is it splits the overall dataset into smaller and smaller subsets until each subset is as close to pure (having the same characteristics) as possible. This process is also known as divide and conquer.

The mathematics for deciding how to split the data is based on an equation called entropy, which measures the purity of a potential decision node. The lower the entropy scores the purer the decision node is. The entropy can range from 0 (most pure) to 1 (most impure).

One of the most popular algorithms for developing decision trees is the C5.0 algorithm. This algorithm, in particular, uses entropy to assess potential decision nodes.

Pros and Cons

The prose of decision trees includes its versatile nature. Decision trees can deal with all types of data as well as missing data. Furthermore, this approach learns automatically and only uses the most important features. Lastly, a deep understanding of mathematics is not necessary to use this method in comparison to more complex models.

Some problems with decision trees are that they can easily overfit the data. This means that the tree does not generalize well to other datasets. In addition, a large complex tree can be hard to interpret, which may be yet another indication of overfitting.

Conclusion

Decision trees provide another vehicle that researchers can use to empower decision making. This model is most useful particularly when a decision that was made needs to be explained and defended. For example, when rejecting a person’s loan application. Complex models made provide stronger mathematical reasons but would be difficult to explain to an irate customer.

Therefore, for complex calculation presented in an easy to follow format. Decision trees are one possibility.

Mixed Methods

Mix Methods research involves the combination of qualitative and quantitative approaches to addressing a research problem. Generally, qualitative and quantitative methods have separate philosophical positions when it comes to how to uncover insights in addressing research questions.

For many, mixed methods have their own philosophical position, which is pragmatism. Pragmatists believe that if it works it’s good. Therefore, if mixed methods lead to a solution it’s an appropriate method to use.

This post will try to explain some of the mixed method designs. Before explaining it is important to understand that there are several common ways to approach mixed methods

  • Qualitative and Quantitative are equal (Convergent Parallel Design)
  • Quantitative is more important than qualitative (explanatory design)
  • Qualitative is more important than quantitative

Convergent Parallel Design 

This design involves the simultaneous collecting of qualitative and quantitative data. The results are then compared to provide insights into the problem. The advantage of this design is the quantitative data provides for generalizability while the qualitative data provides information about the context of the study.

However, the challenge is in trying to merge the two types of data. Qualitative and quantitative methods answer slightly different questions about a problem. As such it can be difficult to paint a picture of the results that are comprehensible.

Explanatory Design

This design puts emphasis on the quantitative data with qualitative data playing a secondary role. Normally, the results found in the quantitative data are followed up on in the qualitative part.

For example, if you collect surveys about what students think about college and the results indicate negative opinions, you might conduct an interview with students to understand why they are negative towards college. A Likert survey will not explain why students are negative. Interviews will help to capture why students have a particular position.

The advantage of this approach is the clear organization of the data. Quantitative data is more important. The drawback is deciding what about the quantitative data to explore when conducting the qualitative data collection.

Exploratory Design 

This design is the opposite of explanatory. Now the qualitative data is more important than the quantitative. This design is used when you want to understand a phenomenon in order to measure it.

It is common when developing an instrument to interview people in focus groups to understand the phenomenon. For example, if I want to understand what cellphone addiction is I might ask students to share what they think about this in interviews. From there, I could develop a survey instrument to measure cell phone addiction.

The drawback to this approach is the time consumption. It takes a lot of work to conduct interviews, develop an instrument, and assess the instrument.

Conclusions

Mixed methods are not that new. However, they are still a somewhat unusual approach to research in many fields. Despite this, the approaches of mixed methods can be beneficial depending on the context.

Intro to Using Machine Learning

Machine learning is about using data to take action. This post will explain common steps that are taking when using machine learning in the analysis of data. In general, there are five steps when applying machine learning.

  1. Collecting data
  2. Preparing data
  3. Exploring data
  4. Training a model on the data
  5. Assessing the performance of the model
  6. Improving the model

We will go through each step briefly

Step One, Collecting Data

Data can come from almost anywhere. Data can come from a database in a structured format like mySQL. Data can also come unstructured such as tweets collected from twitter. However you get the data, you need to develop a way to clean and process it so that it is ready for analysis.

There are some distinct terms used in machine learning that some coming from traditional research may not be familiar.

  • example-An example is one set of data. In an excel spreadsheet, an example would be one row. In empirical social science research, we would call an example a respondent or participant.
  • Unit of observation-This is how an example is measured. The units can be time, money, height, weight, etc.
  • feature-A feature is a characteristic of an example. In other forms of research, we normally call a feature a variable. For example, ‘salary’ would be a feature in machine learning but a variable in traditional research.

Step Two, Preparing Data

This is actually the most difficult step in machine learning analysis. It can take up to 80% of the time. With data coming from multiple sources and in multiple formats it is a real challenge to get everything where it needs to be for an analysis.

Missing data needs to be addressed, duplicate records, and other issues are a part of this process. Once these challenges are dealt with it is time to explore the data.

Step Three, Explore the Data

Before analyzing the data, it is critical that the data is explored. This is often done visually in the form of plots and graphs but also with summary statistics. You are looking for some insights into the data and the characteristics of different features. You are also looking out for things that might be unusually such as outliers. There are also times when a variable needs to be transformed because there are issues with normality.

Step Four, Training a Model

After exploring the data, you should have an idea of what you want to know if you did not already know. Determining what you want to know helps you to decide which algorithm is most appropriate for developing a model.

To develop a model, we normally split the data into a training and testing set. This allows us to assess the model for its strengths and weaknesses.

Step Five, Assessing the Model

The strength of the model is determined. Every model has certain biases that limit its usefulness. How to assess a model depends on what type of model is developed and the purpose of the analysis. Whenever suitable, we want to try and improve the model.

Step Six, Improving the Model

Improve can happen in many ways. You might decide to normalize the variables in a different way. Or you may choose to add or remove features from the model. Perhaps you may switch to a different model.

Conclusion

Success in data analysis involves have a clear path for achieving your goals. The steps presented here provide one way of tackling machine learning.

Machine Learning: Getting Machines to Learn

One of the most interesting fields of quantitative research today is machine learning. Machine Learning serves the purpose of developing models through the use of algorithms in order to inform action.

Examples of machine learning are all around us. Machine learning is used to make recommendations about what you should purchase at most retail websites. Machine learning is also used to filter spam from your email inbox. Each of these two examples involves making a prediction about previous behavior. This is what machines learning does. It learns what will happen based on what has happened. However, the question remains how does a machine actually learn.

The purpose of this post is to explain how machines actually “learn.” The process of learning involves three steps which are…

  1. Data input
  2. Abstraction
  3. Generalization

Data Input

Data input is simply having access to some form of data whether it be numbers, text, pictures or something else. The data is the factual information that is used to develop insights for future action.

The majority of a person’s time in conducting machine learning is involved in organizing and cleaning data. This process is actually called data mugging by many. Once the data is ready for analysis, it is time for the abstraction process to begin.

Abstraction

Clean beautiful data still does not provide any useful information yet. Abstraction is the process of deriving meaning from the data. The raw data represent knowledge but as we already are aware the problem is how it is currently represented. Numbers and text mean little to us.

Abstraction takes all of the numbers and or text and develops a model. What a model does is summarize data and provides an explanatiofout the data. For example, if you are doing a study for a bank who wants to know who will default on loans. You might discover from the data that a person is more likely to default if they are a student with a credit card balance over $2,000. How this information is shared with the researcher can be in one of the following forms

  • equation
  • diagram
  • logic rules

This kind of information is hard to find manually and is normally found through the use of an algorithm. Abstraction involves the use of some sort of algorithm. An algorithm is a systemic step-by-step procedure for solving a problem. It is very technical to try and understand algorithms unless you have a graduate degree in statistics.   The point to remember is that algorithms are what the computer uses to learn and develop models.

Developing a model involves training. Training is achieved when the abstraction process is complete. The completion of this process depends on the criteria of what a “good” model is. This varies depending on the requirements of the model and the preference of the researcher.

Generalization

A machine has not actually learned anything until the model it developed is assessed for bias. Bias is a result of the educated guesses (heuristics) that an algorithm makes to develop a model that is systematically wrong.

For example, let’s say an algorithm learns to identify a man by the length of their hair. If a man has really long hair or if a woman has really short hair the algorithm will misclassify them because each person does not fit the educated guess the algorithm developed. The challenge is that these guesses work most of the time but they struggle with exceptions.

The main way of dealing with this is to develop a model on one set of data and test it on another set of data. This will inform the researcher as to what changes are needed for the model.

Another problem is noise. Noise is caused by measurement error data reporting issues trying to make your model deal with noise can lead to overfitting which means that your model only works for your data and cannot be applied to other data sets. This can also be addressed by testing your model on other data sets.

Conclusion

A machine learns through the use of an algorithm to explain relationships in a data set in a specific manner. This process involves the three steps of data input, abstraction and generalization. The results of a machine learning model is a model that can be use to make prediction about the future with a certain degree of accuracy.

Wilcoxon Signed Rank Test in R

The Wilcoxon Signed Rank Test is the non-parametric equivalent of the t-test. If you have questions whether or not your data is normally distributed the Wilcoxon Signed Rank Test can still indicate to you if there is a difference between the means of your sample.

Th Wilcoxon Test compares the medians of two samples instead of their means. The differences between the median and each individual value for each sample is calculated. Values that come to zero are removed. Any remaining values are ranked from lowest to highest. Lastly, the ranks are summed. If the rank sum is different between the two samples it indicates statistical difference between samples.

We will now do an example using r. We want to see if there is a difference in enrollment between private and public universities. Below is the code

We will begin by loading the ISLR package. Then we will load the ‘College’ data and take a look at the variables in the “College” dataset by using the ‘str’ function.

library(ISLR)
data=College
str(College)
## 'data.frame':    777 obs. of  18 variables:
##  $ Private    : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Apps       : num  1660 2186 1428 417 193 ...
##  $ Accept     : num  1232 1924 1097 349 146 ...
##  $ Enroll     : num  721 512 336 137 55 158 103 489 227 172 ...
##  $ Top10perc  : num  23 16 22 60 16 38 17 37 30 21 ...
##  $ Top25perc  : num  52 29 50 89 44 62 45 68 63 44 ...
##  $ F.Undergrad: num  2885 2683 1036 510 249 ...
##  $ P.Undergrad: num  537 1227 99 63 869 ...
##  $ Outstate   : num  7440 12280 11250 12960 7560 ...
##  $ Room.Board : num  3300 6450 3750 5450 4120 ...
##  $ Books      : num  450 750 400 450 800 500 500 450 300 660 ...
##  $ Personal   : num  2200 1500 1165 875 1500 ...
##  $ PhD        : num  70 29 53 92 76 67 90 89 79 40 ...
##  $ Terminal   : num  78 30 66 97 72 73 93 100 84 41 ...
##  $ S.F.Ratio  : num  18.1 12.2 12.9 7.7 11.9 9.4 11.5 13.7 11.3 11.5 ...
##  $ perc.alumni: num  12 16 30 37 2 11 26 37 23 15 ...
##  $ Expend     : num  7041 10527 8735 19016 10922 ...
##  $ Grad.Rate  : num  60 56 54 59 15 55 63 73 80 52 ...

We will now look at the Enroll variable and see if it is normally distributed

hist(College$Enroll)

download.png

This variable is highly skewed to the right. This may mean that it is not normally distributed. Therefore, we may not be able to use a regular t-test to compare private and public universities and the Wilcoxon Test is more appropriate. We will now use the Wilcoxon Test. Below are the results

wilcox.test(College$Enroll~College$Private)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  College$Enroll by College$Private
## W = 104090, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0

The results indicate a difference we will now calculate the medians of the two groups using the ‘aggregate’ function. This function allows us to compare our two groups based on the median. Below is the code with the results.

aggregate(College$Enroll~College$Private, FUN=median)
##   College$Private College$Enroll
## 1              No       1337.5
## 2             Yes        328.0

As you can see, there is a large difference in enrollment in private and public colleges. We can then make the conclusion that there is a difference in the medians of private and public colleges with public colleges have a much higher enrollment.

Conclusion

The Wilcoxon Test is used for a non-parametric analysis of data. This test is useful whenever there are concerns with the normality of the data.

Big Data & Data Mining

Dealing with large amounts of data has been a problem throughout most of human history. Ancient civilizations had to keep large amounts of clay tablets, papyrus, steles, parchments, scrolls etc. to keep track of all the details of an empire.

However, whenever it seemed as though there would be no way to hold any more information a new technology would be developed to alleviate the problem. When people could not handle keeping records on stone paper scrolls were invented. When scrolls were no longer practical books were developed. When hand-copying books were too much the printing press came along.

By the mid 20th century there were concerns that we would not be able to have libraries large enough to keep all of the books that were being developed. With this problem came the solution of the computer. One computer could hold the information of several dozen if not hundreds of libraries.

Now even a single computer can no longer cope with all of the information that is constantly being developed for just a single subject. This has lead to computers working together in networks to share the task of storing information. With data spread across several computers, it makes analyzing data much more challenging. It was now necessary to mine for useful information in a way that people used to mine for gold in the 19th century.

Big data is data that is too large to fit within the memory of a single computer. Analyzing data that is spread across a network of databases takes skills different from traditional statistical analysis. This post will explain some of the characteristics of big data as well as data mining.

Big Data Traits

The three main traits of big data are volume, velocity, and variety. Volume describes the size of big data, which means data to big to be on only one computer. Velocity is about how fast the data can be processed. Lastly, variety different types of data. common sources of big data includes the following

  • Metadata from visual sources such as cameras
  • Data from sensors such as in medical equipment
  • Social media data such as information from google, youtube or facebook

Data Mining

Data mining is the process of discovering a model in a big dataset. Through the development of an algorithm, we can find specific information that helps us to answer our questions. Generally, there are two ways to mine data and these are extraction and summarization.

Extraction is the process of pulling specific information from a big dataset. For example, if we want all the addresses of people who bought a specific book from Amazon the result would be an extraction from a big data set.

Summarization is reducing a dataset to describe it. We might do a cluster analysis in which similar data is combined on a characteristic. For example, if we analyze all the books people ordered through Amazon last year we might notice that one cluster of groups buys mostly religious books while another buys investment books.

Conclusion

Big data will only continue to get bigger. Currently, the response has been to just use more computers and servers. As such, there is now a need for finding information on many computers and servers. This is the purpose of data mining, which is to find pertinent information that answers stakeholders questions.

Type I and Type II Error

Hypothesis testing in statistics involves deciding whether to reject or not reject a null hypothesis. There are problems that can occur when making decisions about a null hypothesis. A researcher can reject a null when they should not reject it, which is called a type I error. The other mistake is not rejecting a null when they should have, which is a type II error. Both of these mistakes represent can seriously damage the interpretation of data.

An Example

The classic example that explains type I and type II errors is a courtroom. In a trial, the defendant is considered innocent until proven guilty. The defendant can be compared to the null hypothesis being true. The prosecutor job is to present evidence that the defendant is guilty. This is the same as providing statistical evidence to reject the null hypothesis which indicates that the null is not true and needs to be rejected.

There are four possible outcomes of our trial and our statistical test…

  1. The defendant can be declared guilty when they are really guilty. That’s a correct decision.This is the same as rejecting the null hypothesis.
  2. The defendant could be judged not guilty when they really are innocent. That’s a correct and is the same as not rejecting the null hypothesis.
  3. The defendant is convicted when they are actually innocent, which is wrong. This is the same as rejecting the null hypothesis when you should not and is know as a type I error
  4. The defendant is guilty but declared innocent, which is also incorrect. This is the same as not rejecting the null hypothesis when you should have. This is known as a type II error.

Important Notes

The probability of committing a type I error is the same as the alpha or significance level of a statistical test. Common values associated with alpha are o.1, 0.05, and 0.01. This means that the likelihood of committing a type I error depends on the level of the significance that the researcher picks.

The probability of committing a type II error is known as beta. Calculating beta is complicated as you need specific values in your null and alternative hypothesis. It is not always possible to supply this. As such, researcher often do not focus on type II error avoidance as they do with type I.

Another concern is that decrease the risk of committing one type of error increases the risk of committing the other. This means that if you reduce the risk of type I error you increase the risk of committing a type II error.

Conclusion

The risk of error or incorrect judgment of a null hypothesis is a risk in statistical analysis. As such, researchers need to be aware of these problems as they study data.

Decision Trees in R

Decision trees are useful for splitting data based into smaller distinct groups based on criteria you establish. This post will attempt to explain how to develop decision trees in R.

We are going to use the ‘College’ dataset found in the “ISLR” package. Once you load the package you need to split the data into a training and testing set as shown in the code below. We want to divide the data based on education level, age, and income

library(ISLR); library(ggplot2); library(caret)
data("College")
inTrain<-createDataPartition(y=College$education, 
 p=0.7, list=FALSE)
trainingset <- College[inTrain, ]
testingset <- College[-inTrain, ]

Visualize the Data

We will now make a plot of the data based on education as the groups and age and wage as the x and y variable. Below is the code followed by the plot. Please note that education is divided into 5 groups as indicated in the chart.

qplot(age, wage, colour=education, data=trainingset)
Rplot10
Create the Model

We are now going to develop the model for the decision tree. We will use age and wage to predict education as shown in the code below.

TreeModel<-train(education~age+income, method='rpart', data=trainingset)

Create Visual of the Model

We now need to create a visual of the model. This involves installing the package called ‘rattle’. You can install ‘rattle’ separately yourself. After doing this below is the code for the tree model followed by the diagram.

fancyRpartPlot(TreeModel$finalModel)

Rplot02

Here is what the chart means

  1. At the top is node 1 which is called ‘HS Grad” the decimals underneath is the percentage of the data that falls within the “HS Grad” category. As the highest node, everything is classified as “HS grad” until we begin to apply our criteria.
  2. Underneath nod 1 is a decision about wage. If a person makes less than 112 you go to the left if they make more you go to the right.
  3. Nod 2 indicates the percentage of the sample that was classified as HS grade regardless of education. 14% of those with less than a HS diploma were classified as a HS Grade based on wage. 43% of those with a HS diploma were classified as a HS grade based on income. The percentage underneath the decimals indicates the total amount of the sample placed in the HS grad category. Which was 57%.
  4. This process is repeated for each node until the data is divided as much as possible.

Predict

You can predict individual values in the dataset by using the ‘predict’ function with the test data as shown in the code below.

predict(TreeModel, newdata = testingset)

Conclusion

Prediction Trees are a unique feature in data analysis for determining how well data can be divided into subsets. It also provides a visual of how to move through data sequentially based on characteristics in the data.

Z-Scores

A z-score indicates how closely related one given score is to mean of the sample. Extremely high or low z-scores indicates that the given data point is unusually above or below the mean of the sample.

In order to understand z-scores you need to be familiar with distribution. In general, data is distributed in a bell shape curve. With the mean being the exact middle of the graph as shown in the picture below.

download

The Greek letter μ is the mean. In this post, we will go through an example that will try to demonstrate how to use and interpret the z-score. Notice that a z-score + 1 takes of 68% of the potential values a z-score + 2 takes of 95%, a z-score + 3 takes of 99%.

Imagine you know the average test score of students on a quiz. The average is 75%. with a standard deviation of 6.4%. Below is the equation for calculating the z-score.

Standard_Score_Calc

Let’s say that one student scored 52% on the quiz. We can calculate the likelihood for this data point by using the formula above.

(52 – 75) / 6.4 = -3.59

Our value is negative which indicates that the score is below the mean of the sample. Our score is very exceptionally low from the mean. This makes sense given that the mean is 75% and the standard deviation is 6.4%. To get a 52% on the quiz was really bad performance.

We can convert the z-score to a percentage to indicate the probability of getting such a value. To do this you would need to find a z-score conversion table on the internet. A quick glance at the table will show you that the probability of getting a score of 52 on the quiz is less than 1%.

Off course, this is based on the average score of 75% with a standard deviation of 6.4%. A different average and standard deviation would change the probability of getting a 52%.

Standardization 

Z-scores are also used to standardize a variable. If you look at our example, the original values were in percentages. By using the z-score formula we converted these numbers into a different value. Specifically, the values of a z-score represent standard deviations from the mean.

In our example, we calculated a z-score of -3.59. In other words, the person who scored 52% on the quiz had a score 3.59 standard deviations below the mean. When attempting to interpret data the z-score is a foundational piece of information that is used extensively in statistics.

Multiple Regression Prediction in R

In this post, we will learn how to predict using multiple regression in R. In a previous post, we learn how to predict with simple regression. This post will be a large repeat of this other post with the addition of using more than one predictor variable. We will use the “College” dataset and we will try to predict Graduation rate with the following variables

  • Student to faculty ratio
  • Percentage of faculty with PhD
  • Expenditures per student

Preparing the Data

First we need to load several packages and divide the dataset int training and testing sets. This is not new for this blog. Below is the code for this.

library(ISLR); library(ggplot2); library(caret)
data("College")
inTrain<-createDataPartition(y=College$Grad.Rate, 
 p=0.7, list=FALSE)
trainingset <- College[inTrain, ]
testingset <- College[-inTrain, ]
dim(trainingset); dim(testingset)

Visualizing the Data

We now need to get a visual idea of the data. Since we are using several variables the code for this is slightly different so we can look at several charts at the same time. Below is the code followed by the plots

> featurePlot(x=trainingset[,c("S.F.Ratio","PhD","Expend")],y=trainingset$Grad.Rate, plot="pairs")
Rplot10

To make these plots we did the following

  1. We used the ‘featureplot’ function told R to use the ‘trainingset’ data set and subsetted the data to use the three independent variables.
  2. Next, we told R what the y= variable was and told R to plot the data in pairs

Developing the Model

We will now develop the model. Below is the code for creating the model. How to interpret this information is in another post.

> TrainingModel <-lm(Grad.Rate ~ S.F.Ratio+PhD+Expend, data=trainingset) > summary(TrainingModel)

As you look at the summary, you can see that all of our variables are significant and that the current model explains 18% of the variance of graduation rate.

Visualizing the Multiple Regression Model

We cannot use a regular plot because are model involves more than two dimensions.  To get around this problem to see are modeling, we will graph fitted values against the residual values. Fitted values are the predict values while residual values are the acutal values from the data. Below is the code followed by the plot.

> CheckModel<-train(Grad.Rate~S.F.Ratio+PhD+Expend, method="lm", data=trainingset)
> DoubleCheckModel<-CheckModel$finalModel
> plot(DoubleCheckModel, 1, pch=19, cex=0.5)
Rplot01

Here is what happened

  1. We created the variable ‘CheckModel’.  In this variable, we used the ‘train’ function to create a linear model with all of our variables
  2. We then created the variable ‘DoubleCheckModel’ which includes the information from ‘CheckModel’ plus the new column of ‘finalModel’
  3. Lastly, we plot ‘DoubleCheckModel’

The regression line was automatically added for us. As you can see, the model does not predict much but shows some linearity.

Predict with Model

We will now do one prediction. We want to know the graduation rate when we have the following information

  • Student-to-faculty ratio = 33
  • Phd percent = 76
  • Expenditures per Student = 11000

Here is the code with the answer

> newdata<-data.frame(S.F.Ratio=33, PhD=76, Expend=11000)
> predict(TrainingModel, newdata)
       1 
57.04367

To put it simply, if the student-to-faculty ratio is 33, the percentage of PhD faculty is 76%, and the expenditures per student is 11,000, we can expect 57% of the students to graduate.

Testing

We will now test our model with the testing dataset. We will calculate the RMSE. Below is the code for creating the testing model followed by the codes for calculating each RMSE.

> TestingModel<-lm(Grad.Rate~S.F.Ratio+PhD+Expend, data=testingset)
> sqrt(sum((TrainingModel$fitted-trainingset$Grad.Rate)^2))
[1] 369.4451
> sqrt(sum((TestingModel$fitted-testingset$Grad.Rate)^2))
[1] 219.4796

Here is what happened

  1. We created the ‘TestingModel’ by using the same model as before but using the ‘testingset’ instead of the ‘trainingset’.
  2. The next two lines of codes should look familiar.
  3. From this output the performance of the model improvement on the testing set since the RMSE is lower than compared to the training results.

Conclusion

This post attempted to explain how to predict and assess models with multiple variables. Although complex for some, prediction is a valuable statistical tool in many situations.

Using Regression for Prediction in R

In the last post about R, we looked at plotting information to make predictions. We will now look at an example of making predictions using regression.

We will use the same data as last time with the help of the ‘caret’ package as well. The code below sets up the seed and the training and testing set we need.

> library(caret); library(ISLR); library(ggplot2)
> data("College");set.seed(1)
> PracticeSet<-createDataPartition(y=College$Grad.Rate,  +                                  p=0.5, list=FALSE) > TrainingSet<-College[PracticeSet, ]; TestingSet<- +         College[-PracticeSet, ] > head(TrainingSet)

The code above should look familiar from the previous post.

Make the Scatterplot

We will now create the scatterplot showing the relationship between “S.F. Ratio” and “Grad.Rate” with the code below and the scatterplot.

> plot(TrainingSet$S.F.Ratio, TrainingSet$Grad.Rate, pch=5, col="green", 
xlab="Student Faculty Ratio", ylab="Graduation Rate")

Rplot10

Here is what we did

  1. We used the ‘plot’ function to make this scatterplot. The x variable was ‘S.F.Ratio’ of the ‘TrainingSet’ the y variable was ‘Grad.Rate’.
  2. We picked the type of dot to use using the ‘pch’ argument and choosing ’19’
  3. Next, we chose a color and labeled each axis

Fitting the Model

We will now develop the linear model. This model will help us to predict future models. Furthermore, we will compare the model of the Training Set with the Test Set. Below is the code for developing the model.

> TrainingModel<-lm(Grad.Rate~S.F.Ratio, data=TrainingSet)
> summary(TrainingModel)

How to interpret this information was presented in a previous post. However, to summarize, we can say that when the student to faculty ratio increases one the graduation rate decreases 1.29. In other words, an increase in the student to faculty ratio leads to decrease in the graduation rate.

Adding the Regression Line to the Plot

Below is the code for adding the regression line followed by the scatterplot

> plot(TrainingSet$S.F.Ratio, TrainingSet$Grad.Rate, pch=19, col="green", xlab="Student Faculty Ratio", ylab="Graduation Rate")
> lines(TrainingSet$S.F.Ratio, TrainingModel$fitted, lwd=3)

Rplot01

Predicting New Values

With our model complete we can now predict values. For our example, we will only predict one value. We want to know what the graduation rate would be if we have a student to faculty ratio of 33. Below is the code for this with the answer

> newdata<-data.frame(S.F.Ratio=33)
> predict(TrainingModel, newdata)
      1 
40.6811

Here is what we did

  1. We made a variable called ‘newdata’ and stored a data frame in it with a variable called ‘S.F.Ratio’ with a value of 33. This is x value
  2. Next, we used the ‘predict’ function from the ‘caret’ package to determine what the graduation rate would be if the student to faculty ratio is 33. To do this we told caret to use the ‘TrainingModel’ we developed using regression and to run this model with the information in the ‘newdata’ dataframe
  3. The answer was 40.68. This means that if the student to faculty ratio is 33 at a university then the graduation rate would be about 41%.

Testing the Model

We will now test the model we made with the training set with the testing set. First, we will make a visual of both models by using the “plot” function. Below is the code follow by the plots.

par(mfrow=c(1,2))
plot(TrainingSet$S.F.Ratio,
TrainingSet$Grad.Rate, pch=19, col=’green’,  xlab=”Student Faculty Ratio”, ylab=’Graduation Rate’)
lines(TrainingSet$S.F.Ratio,  predict(TrainingModel), lwd=3)
plot(TestingSet$S.F.Ratio,  TestingSet$Grad.Rate, pch=19, col=’purple’,
xlab=”Student Faculty Ratio”, ylab=’Graduation Rate’)
lines(TestingSet$S.F.Ratio,  predict(TrainingModel, newdata = TestingSet),lwd=3)

Rplot02.jpeg

In the code, all that is new is the “par” function which allows us to see to plots at the same time. We also used the ‘predict’ function to set the plots. As you can see, the two plots are somewhat differ based on a visual inspection. To determine how much so, we need to calculate the error. This is done through computing the root mean square error as shown below.

> sqrt(sum((TrainingModel$fitted-TrainingSet$Grad.Rate)^2))
[1] 328.9992
> sqrt(sum((predict(TrainingModel, newdata=TestingSet)-TestingSet$Grad.Rate)^2))
[1] 315.0409

The main take away from this complicated calculation is the number 328.9992 and 315.0409. These numbers tell you the amount of error in the training model and testing model. The lower the number the better the model. Since the error number in the testing set is lower than the training set we know that our model actually improves when using the testing set. This means that our model is beneficial in assessing graduation rates. If there were problems we may consider using other variables in the model.

Conclusion

This post shared ways to develop a regression model for the purpose of prediction and for model testing.

Using Plots for Prediction in R

It is common in machine learning to look at the training set of your data visually. This helps you to decide what to do as you begin to build your model.  In this post, we will make several different visual representations of data using datasets available in several R packages.

We are going to explore data in the “College” dataset in the “ISLR” package. If you have not done so already, you need to download the “ISLR” package along with “ggplot2” and the “caret” package.

Once these packages are installed in R you want to look at a summary of the variables use the summary function as shown below.

summary(College)

You should get a printout of information about 18 different variables. Based on this printout, we want to explore the relationship between graduation rate “Grad.Rate” and student to faculty ratio “S.F.Ratio”. This is the objective of this post.

Next, we need to create a training and testing dataset below is the code to do this.

> library(ISLR);library(ggplot2);library(caret)
> data("College")
> PracticeSet<-createDataPartition(y=College$Enroll, p=0.7, +                                  list=FALSE) > trainingSet<-College[PracticeSet,] > testSet<-College[-PracticeSet,] > dim(trainingSet); dim(testSet)
[1] 545  18
[1] 232  18

The explanation behind this code was covered in predicting with caret so we will not explain it again. You just need to know that the dataset you will use for the rest of this post is called “trainingSet”.

Developing a Plot

We now want to explore the relationship between graduation rates and student to faculty ratio. We will be used the ‘ggpolt2’  package to do this. Below is the code for this followed by the plot.

qplot(S.F.Ratio, Grad.Rate, data=trainingSet)
Rplot10
As you can see, there appears to be a negative relationship between student faculty ratio and grad rate. In other words, as the ration of student to faculty increases there is a decrease in the graduation rate.

Next, we will color the plots on the graph based on whether they are a public or private university to get a better understanding of the data. Below is the code for this followed by the plot.

> qplot(S.F.Ratio, Grad.Rate, colour = Private, data=trainingSet)
Rplot.jpeg
It appears that private colleges usually have lower student to faculty ratios and also higher graduation rates than public colleges

Add Regression Line

We will now plot the same data but will add a regression line. This will provide us with a visual of the slope. Below is the code followed by the plot.

> collegeplot<-qplot(S.F.Ratio, Grad.Rate, colour = Private, data=trainingSet) > collegeplot+geom_smooth(method = ‘lm’,formula=y~x)
Rplot01.jpeg
Most of this code should be familiar to you. We saved the plot as the variable ‘collegeplot’. In the second line of code, we add specific coding for ‘ggplot2’ to add the regression line. ‘lm’ means linear model and formula is for creating the regression.

Cutting the Data

We will now divide the data based on the student-faculty ratio into three equal size groups to look for additional trends. To do this you need the “Hmisc” packaged. Below is the code followed by the table

> library(Hmisc)
> divide_College<-cut2(trainingSet$S.F.Ratio, g=3)
> table(divide_College)
divide_College
[ 2.9,12.3) [12.3,15.2) [15.2,39.8] 
        185         179         181

Our data is now divided into three equal sizes.

Box Plots

Lastly, we will make a box plot with our three equal size groups based on student-faculty ratio. Below is the code followed by the box plot

CollegeBP<-qplot(divide_College, Grad.Rate, data=trainingSet, fill=divide_College, geom=c(“boxplot”)) > CollegeBP
Rplot02
As you can see, the negative relationship continues even when student-faculty is divided into three equally size groups. However, our information about private and public college is missing. To fix this we need to make a table as shown in the code below.

> CollegeTable<-table(divide_College, trainingSet$Private)
> CollegeTable
              
divide_College  No Yes
   [ 2.9,12.3)  14 171
   [12.3,15.2)  27 152
   [15.2,39.8] 106  75

This table tells you how many public and private colleges there based on the division of the student-faculty ratio into three groups. We can also get proportions by using the following

> prop.table(CollegeTable, 1)
              
divide_College         No        Yes
   [ 2.9,12.3) 0.07567568 0.92432432
   [12.3,15.2) 0.15083799 0.84916201
   [15.2,39.8] 0.58563536 0.41436464

In this post, we found that there is a negative relationship between student-faculty ratio and graduation rate. We also found that private colleges have a lower student-faculty ratio and a higher graduation rate than public colleges. In other words, the status of a university as public or private moderates the relationship between student-faculty ratio and graduation rate.

You can probably tell by now that R can be a lot of fun with some basic knowledge of coding.

Predicting with Caret

In this post, we will explore the use of the caret package for developing algorithms for use in machine learning. The caret package is particularly useful for processing data before the actual analysis of the algorithm.

When developing algorithms is common practice to divide the data into a training a testing subsamples. The training subsample is what is used to develop the algorithm while the testing sample is used to assess the predictive power of the algorithm. There are many different ways to divide a sample into a testing and training set and one of the main benefits of the “caret” package is in dividing the sample.

In the example we will use, we will return to the “kearnlab” example and this develop an algorithm after sub-setting the sample to have a training data set and a testing data set.

First, you need to download the ‘caret’ and ‘kearnlab’ package if you have not done so. After that below is the code for subsetting the ‘spam’ data from the ‘kearnlab’ package.

inTrain<- createDataPartition(y=spam$type, p=0.75, 
list=FALSE)
training<-spam[inTrain,]
testing<-spam[-inTrain,] 
dim(training)

Here is what we did

  1. We created the variable ‘inTrain’
  2. In the variable ‘inTrain’ we told R to make a partition in the data use the ‘createDataPartition’ function. I the parenthesis we told r to look at the dataset ‘spam’ and to examine the variable ‘type’. Then we told are to pull 75% of the data in ‘type’ and copy it to the ‘inTrain’ variable we created. List = False tells R not to make a list. If you look closely, you will see that the variable ‘type’ is being set as the y variable in the ‘inTrain’ data set. This means that all the other variables in the data set will be used as predictors. Also, remember that the ‘type’ variable has two outcomes “spam” or “nonspam”
  3. Next, we created the variable ‘training’ which is the dataset we will use for developing our algorithm. To make this we take the original ‘spam’ data and subset the ‘inTrain’ partition. Now all the data that is in the ‘inTrain’ partition is now in the ‘training’ variable.
  4. Finally, we create the ‘testing’ variable which will be used for testing the algorithm. To make this variable, we tell R to take everything that was not assigned to the ‘inTrain’ variable and put it into the ‘testing’ variable. This is done through the use of a negative sign
  5. The ‘dim’ function just tells us how many rows and columns we have as shown below.
[1] 3451   58

As you can see, we have 3451 rows and 58 columns. Rows are for different observations and columns are for the variables in the data set.

Now to make the model. We are going to bootstrap our sample. Bootstrapping involves random sampling from the sample with replacement in order to assess the stability of the results. Below is the code for the bootstrap and model development followed by an explanation.

set.seed(32343)
SpamModel<-train(type ~., data=training, method="glm")
SpamModel

Here is what we did,

  1. Whenever you bootstrap, it is wise to set the seed. This allows you to reproduce the same results each time. For us, we set the seed to 32343
  2. Next, we developed the actual model. We gave the model the name “SpamModel” we used the ‘train’ function. Inside the parenthesis, we tell r to set “type” as the y variable and then use ~. which is a shorthand for using all other variables in the model as predictor variables. Then we set the data to the ‘training’ data set and indicate that the method is ‘glm’ which means generalized linear model.
  3. The output for the analysis is available at the link SpamModel

There is a lot of information but the most important information for us is the accuracy of the model which is 91.3%. The kappa stat tells us what the expected accuracy of the model is which is 81.7%. This means that our model is a little bit better than the expected accuracy.

For our final trick, we will develop a confusion matrix to assess the accuracy of our model using the ‘testing’ sample we made earlier. Below is the code

SpamPredict<-predict(SpamModel, newdata=testing)
confusionMatrix(SpamPredict, testing$type)

Here is what we did,

  1. We made a variable called ‘SpamPredict’. We use the function ‘predict’ using the ‘SpamModel’ with the new data called ‘testing’.
  2. Next, we make matrix using the ‘confusionMatrix’ function using the new model ‘SpamPredict’ based on the ‘testing’ data on the ‘type’ variable. Below is the output

Reference

  1. Prediction nonspam spam
       nonspam     657   35
       spam         40  418
                                              
                   Accuracy : 0.9348          
                     95% CI : (0.9189, 0.9484)
        No Information Rate : 0.6061          
        P-Value [Acc > NIR] : <2e-16          
                                              
                      Kappa : 0.8637          
     Mcnemar's Test P-Value : 0.6442          
                                              
                Sensitivity : 0.9426          
                Specificity : 0.9227          
             Pos Pred Value : 0.9494          
             Neg Pred Value : 0.9127          
                 Prevalence : 0.6061          
             Detection Rate : 0.5713          
       Detection Prevalence : 0.6017          
          Balanced Accuracy : 0.9327          
                                              
           'Positive' Class : nonspam

    The accuracy of the model actually improved to 93% on the test data. The other values such as sensitivity and specificity have to do with such things as looking at correct classifications divided by false negatives and other technical matters. As you can see, machine learning is a somewhat complex experience

Simple Prediction

Prediction is one of the key concepts of machine learning. Machine learning is a field of study that is focused on the development of algorithms that can be used to make predictions.

Anyone who has shopped online at has experienced machine learning. When you make a purchase at an online store, the website will recommend additional purchases for you to make. Often these recommendations are based on whatever you have purchased or whatever you click on while at the site.

There are two common forms of machine learning, unsupervised and supervised learning. Unsupervised learning involves using data that is not cleaned and labeled and attempts are made to find patterns within the data. Since the data is not labeled, there is no indication of what is right or wrong

Supervised machine learning is using cleaned and properly labeled data. Since the data is labeled there is some form of indication whether the model that is developed is accurate or not. If the is incorrect then you need to make adjustments to it. In other words, the model learns based on its ability to accurately predict results. However, it is up to the human to make adjustments to the model in order to improve the accuracy of it.

In this post, we will look at using R for supervised machine learning. The definition presented so far will make more sense with an example.

The Example

We are going to make a simple prediction about whether emails are spam or not using data from kern lab.

The first thing that you need to do is to install and load the “kernlab” package using the following code

install.packages("kernlab")
library(kernlab)

If you use the “View” function to examine the data you will see that there are several columns. Each column tells you the frequency of a word that kernlab found in a collection of emails. We are going to use the word/variable “money” to predict whether an email is spam or not. First, we need to plot the density of the use of the word “money” when the email was not coded as spam. Below is the code for this.

plot(density(spam$money[spam$type=="nonspam"]),
 col='blue',main="", xlab="Frequency of 'money'")

This is an advance R post so I am assuming you can read the code. The plot should look like the following.

Rplot10

As you can see, money is not used to frequently in emails that are not spam in this dataset. However, you really cannot say this unless you compare the times ‘money’ is labeled nonspam to the times that it is labeled spam. To learn this we need to add a second line that explains to us when the word ‘money’ is used and classified as spam. The code for this is below with the prior code included.

plot(density(spam$money[spam$type=="nonspam"]),
 col='blue',main="", xlab="Frequency of 'money'")
lines(density(spam$money[spam$type=="spam"]), col="red")

Your new plot should look like the following

Rplot10

If you look closely at the plot doing a visual inspection, where there is a separation between the blue line for nonspam and the red line for spam is the cutoff point for whether an email is spam or not. In other words, everything inside the arc is labeled correctly while the information outside the arc is not.

The next code and graph show that this cutoff point is around 0.1. This means that any email that has on average more than 0.1 frequency of the word ‘money’ is spam. Below is the code and the graph with the cutoff point indicated by a black line.

plot(density(spam$money[spam$type=="nonspam"]),
 col='blue',main="", xlab="Frequency of 'money'")
lines(density(spam$money[spam$type=="spam"]), col="red")
abline(v=0.1, col="black", lw= 3)

Rplot10.jpeg Now we need to calculate the accuracy of the use of the word ‘money’ to predict spam. For our current example, we will simply use in “ifelse” function. If the frequency is greater than 0.1.

We then need to make a table to see the results. The code for the “ifelse” function and the table are below followed by the table.

predict<-ifelse(spam$money > 0.1, "spam","nonspam")
table(predict, spam$type)/length(spam$type)
predict       nonspam        spam
  nonspam 0.596392089 0.266898500
  spam    0.009563138 0.127146273

Based on the table that I am assuming you can read, our model accurately calculates that an email is spam about 71% (0.59 + 0.12) of the time based on the frequency of the word ‘money’ being greater than 0.1.

Of course, for this to be true machine learning we would repeat this process by trying to improve the accuracy of the prediction. However, this is an adequate introduction to this topic.

Survey Design

Survey design is used to describe the opinions, beliefs, behaviors, and or characteristics of a population based on the results of a sample. This design involves the use of surveys that include questions, statements, and or other ways of soliciting information from the sample. This design is used for descriptive purpose primarily but can be combined with other designs (correlational, experimental) at times as well. In this post, we will look at the following.

  • Types of Survey Design
  • Characteristics of Survey Design

Types of Survey Design

There are two common forms of survey design which are cross-sectional and longitudinal.   A cross-sectional survey design is the collection of data at one specific point in time. Data is only collected once in a cross-sectional design.

A cross-sectional design can be used to measure opinions/beliefs, compare two or more groups, evaluate a program, and or measure the needs of a specific group. The main goal is to analyze the data from a sample at a given moment in time.

A longitudinal design is similar to a cross-sectional design with the difference being that longitudinal designs require collection over time.Longitudinal studies involve cohorts and panels in which data is collected over days, months, years and even decades. Through doing this, a longitudinal study is able to expose trends over time in a sample.

Characteristics of Survey Design

There are certain traits that are associated with survey design. Questionnaires and interviews are a common component of survey design. The questionnaires can happen by mail, phone, internet, and in person. Interviews can happen by phone, in focus groups, or one-on-one.

The design of a survey instrument often includes personal, behavioral and attitudinal questions and open/closed questions.

Another important characteristic of survey design is monitoring the response rate. The response rate is the percentage of participants in the study compared to the number of surveys that were distributed. The response rate varies depending on how the data was collected. Normally, personal interviews have the highest rate while email request has the lowest.

It is sometimes necessary to report the response rate when trying to publish. As such, you should at the very least be aware of what the rate is for a study you are conducting.

Conclusion

Surveys are used to collect data at one point in time or over time. The purpose of this approach is to develop insights into the population in order to describe what is happening or to be used to make decisions and inform practice.

Correlational Designs

Correlational research is focused on examining the relationships among two or more variables. This information can be used either to explain a phenomenon or to make predictions. This post will explain the two forms of correlational design as well as the characteristics of correlational design in general.

Explanatory Design

An explanatory design seeks to determine to what extent two or more variables co-vary. Co-vary simply means the strength of the relationship of one variable to another. In general, two or more variables can have a strong, weak, or no relationship. This is determined by the product moment correlation coefficient, which is usually referred to as r. The r is measured on a scale of -1 to 1. The higher the absolute value the stronger the relationship.

For example, let’s say we do a study to determine the strength of the relationship between exercise and health. Exercise is the explanatory variable and health is the response variable. This means that we are hoping the exercise will explain health or you can say we are hoping that health responds to exercise. In this example, let’s say that there is a strong relationship between exercise and health with an r of 0.7. This literally means that when exercise goes up one unit, that health improves by 0.7 units or that the more exercise a person gets the healthier they are. In other words, when one increases the other increase as well.

Exercise is able to explain a certain amount of the variance (amount of change) in health. This is done by squaring the r to get the r-squared. The higher the r-squared to more appropriate the model is in explaining the relationship between the explanatory and response variable. This is where regression comes from.

This also holds true for a negative relationship but in negative relationships when the explanatory variables increase the response variable decreases. For example, let’s say we do a study that examines the relationship between exercise and age and we calculate an r of -0.85. This means that when exercise increases one unit age decreases 0.85. In other words, more exercises mean that the person is probably younger. In this example, the relationship is strong but indicates that the variables move in opposite directions.

Prediction Design

Prediction design has most of the same functions as explanatory design with a few minor changes. In prediction design, we normally do not use the term explanatory and response variable. Rather we have predictor and outcome variable as terms. This is because we are trying to predict and not explain. In research, there are many terms for independent and dependent variable and this is because different designs often use different terms.

Another difference is the prediction designs are focused on determining future results or forecasting. For example, if we are using exercise to predict age we can develop an equation that allows us to determine a person’s age based on how much they exercise or vice versa. Off course, no model is 100% accurate but a good model can be useful even if it is wrong at times.

What both designs have in common is the use of r and r square and the analysis of the strength of the relationship among the variables.

Conclusion

In research, explanatory and prediction correlational designs have a place in understanding data. Which to use depends on the goals of the research and or the research questions. Both designs have

Simple Regression in R

In this post, we will look at how to perform a simple regression using R. We will use a built-in dataset in R called ‘mtcars.’ There are several variables in this dataset but we will only use ‘wt’ which stands for the weight of the cars and ‘mpg’ which stands for miles per gallon.

Developing the Model

We want to know the association or relationship between the weight of a car and miles per gallon. We want to see how much of the variance of ‘mpg’ is explained by ‘wt’. Below is the code for this.

> Carmodel <- lm(mpg ~ wt, data = mtcars)

Here is what we did

  1. We created the variable ‘Carmodel’ to store are information
  2. Inside this variable, we used the ‘lm’ function to tell R to make a linear model.
  3. Inside the function, we put ‘mpg ~ wt’ the ‘~’ sign means ’tilda’ in English and is used to indicate that ‘mpg’ is a function of ‘wt’. This section is the actual notation for the regression model.
  4. After the comma, we see ‘data = mtcars’ this is telling R to use the ‘mtcar’ dataset.

Seeing the Results

Once you pressed enter you probably noticed nothing happens. The model ‘Carmodel’ was created but the results have not been displayed. Below is various information you can extract from your model.

The ‘summary’ function is useful for pulling most of the critical information. Below is the code for the output.

> summary(Carmodel)

Call:
lm(formula = mpg ~ wt, data = mtcars)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.5432 -2.3647 -0.1252  1.4096  6.8727 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  37.2851     1.8776  19.858  < 2e-16 ***
wt           -5.3445     0.5591  -9.559 1.29e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared:  0.7528,	Adjusted R-squared:  0.7446 
F-statistic: 91.38 on 1 and 30 DF,  p-value: 1.294e-10

We are not going to explain the details of the output (please see simple regression). The results indicate a model that explains 75% of the variance or has an r-square of 0.75. The model is statistically significant and the equation of the model is -5.45x + 37.28 = y

Plotting the Model

We can also plot the model using the code below

> coef_Carmodel<-coef(Carmodel)
> plot(mpg ~ wt, data = mtcars)
> abline(a = coef_Carmodel[1], b = coef_Carmodel[2])

Here is what we did

  1. We made the variable ‘coef_Carmodel’ and stored the coefficients (intercept and slope) of the ‘Carmodel’ using the ‘coef’ function. We will need this information soon.
  2. Next, we plot the ‘mtcars’ dataset using ‘mpg’ and ‘wt’.
  3. To add the regression line we use the ‘abline’ function. To add the intercept and slope we use a = the intercept from our ‘coef_Carmodel’ variable which is subset [1] from this variable. For slope, we follow the same process but use a [2]. This will add the line and your graph should look like the following.

Rplot10

From the visual, you can see that as weight increases there is a decrease in miles per gallon.

Conclusion

R is capable of much more complex models than the simple regression used here. However, understanding the coding for simple modeling can help in preparing you for much more complex forms of statistical modeling.

Experimental Design: Within Groups

Within groups, experimental design is the use of only one group in an experiment. This is in contrast to a between-group design which involves two or more groups. Within-group design is useful when the number of is two low in order to split them into different groups.

There are two common forms of within-group experimental design, time-series, and repeated measures. Under time series there are interrupted times series and equivalent time series. Under repeated-measure, there is only repeated measure design. In this post, we will look at the following forms of within-group experimental design.

  • interrupted time series
  • equivalent time series
  • repeated measures design

Interrupted Time Series Design

Interrupted time series design involves several pre-tests followed by an intervention and then several post-test of one group. By measuring the several times, many threats to internal validity are reduced, such as regression, maturation, and selection. The pre-test results are also used as covariates when analyzing the post-tests.

Equivalent Time Series Design

Equivalent time series design involves the use of a measurement followed by intervention followed by measurement etc. In many ways, this design is a repeated post-test only design. The primary goal is to plot the results of the post-test and determine if there is a pattern that develops over time.

For example, if you are tracking the influence of blog writing on vocabulary acquisition, the intervention is blog writing and the dependent variable is vocabulary acquisition. As the students write a blog, you measure them several times over a certain period. If a plot indicates an upward trend you could infer that blog writing made a difference in vocabulary acquisition.

Repeated Measures

Repeated measures is the use of several different treatments over time. Before each treatment, the group is measured. Each post-test is compared to other post-test to determine which treatment was the best.

For example, let’s say that you still want to assess vocabulary acquisition but want to see how blog writing and public speaking affect it. First, you measure vocabulary acquisition. Next, you employ the first intervention followed by a second assessment of vocabulary acquisition. Third, you use the public speaking intervention followed by the third assessment of vocabulary acquisition. You now have three parts of data to compare

  1. The first assessment of vocabulary acquisition (a pre-test)
  2. The second assessment of vocabulary acquisition (post-test 1 after the blog writing)
  3. The third assessment of vocabulary acquisition (post-test 2 after the public speaking)

Conclusion

Within-group experimental designs are used when it is not possible to have several groups in an experiment. The benefits include needing fewer participants. However, one problem with this approach is the need to measure several times which can be labor intensive.

ANOVA with R

Analysis of variance (ANOVA) is used when you want to see if there is a difference in the means of three or more groups due to some form of treatment(s). In this post, we will look at conducting an ANOVA calculation using R.

We are going to use a dataset that is already built into R called ‘InsectSprays.’ This dataset contains information on different insecticides and their ability to kill insects. What we want to know is which insecticide was the best at killing insects.

In the dataset ‘InsectSprays’, there are two variables, ‘count’, which is the number of dead bugs, and ‘spray’ which is the spray that was used to kill the bug. For the ‘spray’ variable there are six types label A-F. There are 72 total observations for the six types of spray which comes to about 12 observations per spray.

Building the Model

The code for calculating the ANOVA is below

> BugModel<- aov(count ~ spray, data=InsectSprays)
> BugModel
Call:
   aov(formula = count ~ spray, data = InsectSprays)

Terms:
                   spray Residuals
Sum of Squares  2668.833  1015.167
Deg. of Freedom        5        66

Residual standard error: 3.921902
Estimated effects may be unbalanced

Here is what we did

  1. We created the variable ‘BugModel’
  2. In this variable, we used the function ‘aov’ which is the ANOVA function.
  3. Within the ‘aov’ function we told are to determine the count by the difference sprays that is what the ‘~’ tilde operator does.
  4. After the comma, we told R what dataset to use which was “InsectSprays.”
  5. Next, we pressed ‘enter’ and nothing happens. This is because we have to make R print the results by typing the name of the variable “BugModel” and pressing ‘enter’.
  6. The results do not tell us anything too useful yet. However, now that we have the ‘BugModel’ saved we can use this information to find the what we want.

Now we need to see if there are any significant results. To do this we will use the ‘summary’ function as shown in the script below

> summary(BugModel)
            Df Sum Sq Mean Sq F value Pr(>F)    
spray        5   2669   533.8    34.7 <2e-16 ***
Residuals   66   1015    15.4                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

These results indicate that there are significant results in the model as shown by the p-value being essentially zero (Pr(>F)). In other words, there is at least one mean that is different from the other means statistically.

We need to see what the means are overall for all sprays and for each spray individually. This is done with the following script

> model.tables(BugModel, type = 'means')
Tables of means
Grand mean
    
9.5 

 spray 
spray
     A      B      C      D      E      F 
14.500 15.333  2.083  4.917  3.500 16.667

The ‘model.tables’ function tells us the means overall and for each spray. As you can see, it appears spray F is the most efficient at killing bugs with a mean of 16.667.

However, this table does not indicate the statistically significance. For this we need to conduct a post-hoc Tukey test. This test will determine which mean is significantly different from the others. Below is the script

> BugSpraydiff<- TukeyHSD(BugModel)
> BugSpraydiff
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = count ~ spray, data = InsectSprays)

$spray
           diff        lwr       upr     p adj
B-A   0.8333333  -3.866075  5.532742 0.9951810
C-A -12.4166667 -17.116075 -7.717258 0.0000000
D-A  -9.5833333 -14.282742 -4.883925 0.0000014
E-A -11.0000000 -15.699409 -6.300591 0.0000000
F-A   2.1666667  -2.532742  6.866075 0.7542147
C-B -13.2500000 -17.949409 -8.550591 0.0000000
D-B -10.4166667 -15.116075 -5.717258 0.0000002
E-B -11.8333333 -16.532742 -7.133925 0.0000000
F-B   1.3333333  -3.366075  6.032742 0.9603075
D-C   2.8333333  -1.866075  7.532742 0.4920707
E-C   1.4166667  -3.282742  6.116075 0.9488669
F-C  14.5833333   9.883925 19.282742 0.0000000
E-D  -1.4166667  -6.116075  3.282742 0.9488669
F-D  11.7500000   7.050591 16.449409 0.0000000
F-E  13.1666667   8.467258 17.866075 0.0000000

There is a lot of information here. To make things easy, wherever there is a p adj of less than 0.05 that means that there is a difference between those two means. For example, bug spray F and E have a difference of 13.16 that has a p adj of zero. So these two means are really different statistically.This chart also includes the lower and upper bounds of the confidence interval.

The results can also be plotted with the script below

> plot(BugSpraydiff, las=1)

Below is the plot

Rplot10

Conclusion

ANOVA is used to calculate if there is a difference of means among three or more groups. This analysis can be conducted in R using various scripts and codes.

Experimental Designs: Between Groups

In experimental research, there are two common designs. They are between and within group design. The difference between these two groups of designs is that between group involves two or more groups in an experiment while within group involves only one group.

This post will focus on between group designs. We will look at the following forms of between group design…

  • True/quasi-experiment
  • Factorial Design

True/quasi Experiment

A true experiment is one in which the participants are randomly assigned to different groups. In a quasi-experiment, the researcher is not able to randomly assigned participants to different groups.

Random assignment is important in reducing many threats to internal validity. However, there are times when a researcher does not have control over this, such as when they conduct an experiment at a school where classes have already been established. In general, a true experiment is always considered superior methodological to a quasi-experiment.

Whether the experiment is a true experiment or a quasi-experiment. There are always two groups that are compared in the study. One group is the controlled group, which does not receive the treatment. The other group is called the experimental group, which receives the treatment of the study. It is possible to have more than two groups and several treatments but the minimum for between group designs is two groups.

Another characteristic that true and quasi-experiments have in common is the type of formats that the experiment can take. There are two common formats

  • Pre- and post test
  • Post test only

A pre- and post test involves measuring the groups of the study before the treatment and after the treatment. The desire normally is for the groups to be the same before the treatment and for them to be different statistically after the treatment. The reason for them being different is because of the treatment, at least hopefully.

For example, let’s say you have some bushes and you want to see if the fertilizer you bought makes any difference in the growth of the bushes.  You divide the bushes into two groups, one that receives the fertilizer (experimental group), and one that does not (controlled group). You measure the height of the bushes before the experiment to be sure they are the same. Then, you apply the fertilizer to the experimental group and after a period of time, you measure the heights of both groups again. If the fertilized bushes grow taller than the control group you can infer that it is because of the fertilizer.

Post-test only design is when the groups are measured only after the treatment. For example, let’s say you have some corn plants and you want to see if the fertilizer you bought makes any difference.in the amount of corn produced.  You divide the corn plants into two groups, one that receives the fertilizer (experimental group), and one that does not (controlled group). You apply the fertilizer to the control group and after a period of time, you measure the amount of corn produced. If the fertilized corn produces more you can infer that it is because of the fertilizer. You never measure the corn beforehand because they had not produced any corn yet.

Factorial design involves the use of more than one treatment. Returning to the corn example, let’s say you want to see not only how fertilizer affects corn production but also how the amount of water the corn receives affects production as well.

In this example, you are trying to see if there is an interaction effect between fertilizer and water.  When water and fertilizer are increased does production increase, is there no increase, or if one goes up and the other goes down does that have an effect?

Conclusion

Between group designs such as true and quasi-experiments provide a way for researchers to establish cause and effect. Pre- post test is employed as well as factorial designs to establish relationships between variables

Calculating Chi-Square in R

There are times when conducting research that you want to know if there is a difference in categorical data. For example, is there a difference in the number of men who have blue eyes and who have brown eyes. Or is there a relationship between gender and hair color. In other words, is there a difference in the count of a particular characteristic or is there a relationship between two or more categorical variables.

In statistics, the chi-square test is used to compare categorical data. In this post, we will look at how you can use the chi-square test in R.

For our example, we are going to use data that is already available in R called “HairEyeColor”. Below is the data

> HairEyeColor
, , Sex = Male

       Eye
Hair    Brown Blue Hazel Green
  Black    32   11    10     3
  Brown    53   50    25    15
  Red      10   10     7     7
  Blond     3   30     5     8

, , Sex = Female

       Eye
Hair    Brown Blue Hazel Green
  Black    36    9     5     2
  Brown    66   34    29    14
  Red      16    7     7     7
  Blond     4   64     5     8

As you can see, the data comes in the form of a list and shows hair and eye color for men and women in separate tables. The current data is unusable for us in terms of calculating differences. However, by using the ‘marign.table’ function we can make the data useable as shown in the example below.

> HairEyeNew<- margin.table(HairEyeColor, margin = c(1,2))
> HairEyeNew
       Eye
Hair    Brown Blue Hazel Green
  Black    68   20    15     5
  Brown   119   84    54    29
  Red      26   17    14    14
  Blond     7   94    10    16

Here is what we did. We created the variable ‘HairEyeNew’ and we stored the information from ‘HairEyeColor’ into one table using the ‘margin.table’ function. The margin was set 1,2 for the table.

Now all are data from the list are combined into one table.

We now want to see if there is a particular relationship between hair and eye color that is more common. To do this, we calculate the chi-square statistic as in the example below.

> chisq.test(HairEyeNew)

	Pearson's Chi-squared test

data:  HairEyeNew
X-squared = 138.29, df = 9, p-value < 2.2e-16

The test tells us that one or more of the relationships are more common than others within the table. To determine which relationship between hair and eye color is more common than the rest we will calculate the proportions for the table as seen below.

> HairEyeNew/sum(HairEyeNew)
       Eye
Hair          Brown        Blue       Hazel       Green
  Black 0.114864865 0.033783784 0.025337838 0.008445946
  Brown 0.201013514 0.141891892 0.091216216 0.048986486
  Red   0.043918919 0.028716216 0.023648649 0.023648649
  Blond 0.011824324 0.158783784 0.016891892 0.027027027

As you can see from the table, brown hair and brown eyes are the most common (0.20 or 20%) flowed by blond hair and blue eyes (0.15 or 15%).

Conclusion

The chi-square serves to determine differences among categorical data. This tool is useful for calculating the potential relationships among non-continuous variables

Philosophical Foundations of Research: Epistemology

Epistemology is the study of the nature of knowledge. It deals with questions as is there truth and or absolute truth, is there one way or many ways to see something. In research, epistemology manifest itself in several views. The two extremes are positivism and interpretivism.

Positivism

Positivism asserts that all truth can be verified and proven scientifically and can be measured and or observed. This position discounts religious revelation as a source of knowledge as this cannot be verified scientifically. The position of positivist is also derived from realism in that there is an external world out there that needs to be studied.

For researchers, positivism is the foundation of quantitative research. Quantitative researchers try to be objective in their research, they try to avoid coming into contact with whatever they are studying as they do not want to disturb the environment. One of the primary goals is to make generalizations that are applicable in all instances.

For quantitative researchers, they normally have a desire to test a theory. In other words, the develop one example of what they believe is a truth about a phenomenon (a theory) and they test the accuracy of this theory with statistical data. The data determines the accuracy of the theory and the changes that need to be made.

By the late 19th and early 20th centuries, people were looking for alternative ways to approach research. One new approach was interpretivism.

Interpretivism

Interpretivism is the complete opposite of positivism in many ways. Interpretivism asserts that there is no absolute truth but relative truth based on context. There is no single reality but multiple realities that need to be explored and understood.

For interpretist, There is a fluidity in their methods of data collection and analysis. These two steps are often iterative in the same design. Furthermore, intrepretist see themselves not as outside the reality but a player within it. Thus, they often will share not only what the data says but their own view and stance about it.

Qualitative researchers are interpretists. They spend time in the field getting close to their participants through interviews and observations. They then interpret the meaning of these communications to explain a local context specific reality.

While quantitative researchers test theories, qualitative researchers build theories. For qualitative researchers, they gather data and interpret the data by developing a theory that explains the local reality of the context. Since the sampling is normally small in qualitative studies, the theories do not often apply to many.

Conclusion

There is little purpose in debating which view is superior. Both positivism and interpretivism have their place in research. What matters more is to understand your position and preference and to be able to articulate in a reasonable manner. It is often not what a person does and believes that is important as why they believe or do what they do.