Tag Archives: chemistry

scientists experimenting in the laboratory

Acid & Bases

We will take a look at some simple ideas related to acid bases

Acids and bases are classified by the chemical behavior of their molecules. Acids usually have a sour taste, are covalent electrolytes, and turn litmus paper red. Citric acid is one example of an acid many of us have encountered as it is commonly found in citrus fruits such as oranges. At a technical level, acids donate a H+ ion during a chemical reaction.

ad

On the other hand, Bases tend to have a better taste, are slippery when mixed with water, and turn litmus paper blue. Soap is one example of the use of a base in everyday life. Bases accept an H+ ion during a chemical reaction at a technical level. When acids and bases are mixed, they generally neutralize each other and produce water as a by-product.

Most acids and bases are aqueous solutions, which means they are found in a liquid state. However, some liquids do not neatly fall into the category of acid or base. Water is an example of this, and the term used to describe this is amphoteric. This means that water will sometimes donate an H+ ion or accept an H+ ion depending on the context. For this reason, water is often added to acids/bases to dilute the concentration of either one.

Water is also considered neutral on the pH scale commonly used to identify acids and bases. The Ph scale stands for potential hydrogen scale and measures the amount of hydronium ion in the solution. Lower numbers on the pH scale indicate higher levels of hydronium.

Most fruits and vegetables are considered to have low pH, thus considered base or alkaline, and they include the following

  • Avocados
  • Persimmon
  • lentils
  • Olives, black
  • Honeydew melon
  • Mangoes, ripe
  • Honeydew

Foods that are acidic in nature include the following

  • Most dairy
  • Citrus fruits
  • Meat
  • Sweeteners
  • Alcohol

There are lots of websites that promote such things as an alkaline diet. However, this is generally highly controversial, and the experts do not seem to agree about the benefits of eating alkaline foods.

Conclusions

Understanding acids/bases and their behavior can be important, especially in everyday life. Acid and bases serve a vital role in many different substances and can be helpful or harmful depending on the context.

activity adventure aerial air

Gases, Pressure, & Laws

It is common in chemistry to have to deal with gases. Naturally, scientists have uncovered various laws that describe how gases act. This post will look at concepts such as pressure and the development of various laws related to gases and pressure.

Pressure and Units

Pressure is defined as (force / area). To make this practical, scientists have found that our bodies are constantly exposed to 14.7 pounds of pressure per square inch by the air around us. Our bodies are so used to this constant external pressure that without it breathing would be difficult, if not impossible.

There are various units of measurement of pressure. The Pascal, named after Blaise Pascal, is newtons per meter square. However, Pascals are rarely used by scientists. Another common unit is standard atmospheric pressure or atm for short, which is the average amount of pressure exerted by air at sea level. As a fact, one atm is the equivalent of 101,325 pascals.

ad

One more unit for pressure is the torr, which is 1 /760th of an atm. In terms of measuring pressure, it is common to use a barometer, and a barometer measures pressure using millimeters of mercury or mmHg. The units on a barometer are almost the same as for the torr.

Laws Related to Gases

There are several laws related to gases. For example, Boyle’s law states an inverse relationship between pressure and volume with the assumption that temperature is constant. In other words, when the pressure goes up, the volume will go down and vice versa. Boyle’s law was developed by Robert Boyle, an Irish scientist from the 17th century.

Breathing is based on Boyle’s law. When we breathe, inhaling causes the volume of our lungs to grow, which leads to a drop in pressure. The pressure drop is what allows air to flow into the lungs. The opposite takes place when we exhale. Our lungs become smaller, raising the pressure and forcing the air out of our bodies.

Charles’s laws are somewhat of a variation on Boyle’s law. This law was developed by Jacques Charles, a French scientist of the 18th century. Charles law states that if pressure is constant, then temperature and volume are proportional. In other words, when the temperature goes up or down, then the volume will go up or down.

An interesting by-product of Charles’ law is the idea behind absolute zero. Essentially, as we lower the temperature, the volume of a gas will shrink. However, gas is made of matter, and it can’t go to zero. This implies that there is a lower limit to temperature, and this lower limit is called absolute zero and is -273.15 C.

As shown below, the combined gas law combines Boyle and Charles’ law into one equation.

(p * v) / T

Pressure times volume captures a value to describe a gas in a particular context. However, we use the equation to solve for unknown values, so it is more appropriate to show it as follows.

(p1 * v1) / T1 = (p2 * v2) / T2

Conclusion

People generally dislike pressure, but the pressure is literally needed for life, at least when it comes to gases. Thanks to the work of many excellent scientists, we have a better understanding of how gases behave in the world around us.

scientist in laboratory

Chemical Equations

Chemical reactions involves the rearrangement of atoms to beget new chemicals. Often these reactions are captured succinctly in what is called a chemical equation. For example, if we want to show how carbon reacts with oxygen to make carbon dioxide we would write the follow chemical equation.

ad

The plus sign means “reacts with” and the arrow means “to make”. Therefore, we can write this chemical equation in English by saying

Carbon reacts with oxygen to make carbon dioxide

Chemical equations need to balance. If you look at the example above, there are the same number of atoms for each element on each side. The example above is rather simple, however, sometimes it is a little trickeier to tell if an chemical equation is balanced.

In the reaction above we have to look carefully to see if the chemical equation is balanced. Starting on the left we have 1 carbon and 4 hydrogens. Next, there is a 2 which means that we multipl everything by 2 that is next to it. In other words, we do not have 2 oxygen atoms but rather 4 (2 x 2 = 4). After the arrow, we have 1 carbon and 2 oxygen atoms and after the plus sign we have 4 hydrogen atoms (2 x 2 = 4) and 2 oxygen (2 x 1 = 2). If we line everything up you can see that this equation is balanced.

Left SideRight Side
C 1 x 1 = 1 1 x 1 = 1
H 4 x 1 = 4 2 x 2 = 4
O 2 x 2 = 4 2 + (2 x 1) = 4

There are times when you need to balance a chemical equation. This can get really challlenging but we will do a simple example below.

The chemical equation above is not balance as you can see below

Left SideRight Side
H 1 x 2 = 2 1 x 1 = 1
Cl 1 x 2 = 2 1 x 1 = 1

The table above is one process in balancing an equation. We need both sides to equal each other and the simplest way to do this is to multiple the right side by two and we get the following table.

Left SideRight Side
H 1 x 2 = 2 2 x 1 = 2
Cl 1 x 2 = 2 2 x 1 = 2

Below is what our balanced chemical equation looks like.

As mentioned previous, placing the 2 in front of the molecule means multiply everything by 2. Such an example like this is really simple but provides a basic understanding of this process.

Conclusion

Chemical equations can be really fun to deal with once you understand how this works. In the beginning, it can be truly frustrating but perseverance will make the difference.

water drop

Physical & Chemical Changes in Chemistry

In this post, we will focus most of our attention on physical changes in chemistry with a brief look at chemical changes.

Changes

Physical change is a change to a substance that does not alter the chemical composition. For example, boiling water is a physical change. Generally, physical changes are easy to reverse, such as when steam is cooled to become liquid water.

ad

Chemical change is a change that alters the chemical composition of a substance. An example would be various forms of cooking, such as frying potatoes to make french fries. Unlike physical changes, chemical changes are much harder to reverse. Just as it is impossible to turn french fries back into raw potatoes.

A specific type of physical change is called phase change. There are several different types of phase changes, as listed below.

  • melting
  • vaporizing
  • freezing
  • condensing
  • sublimation

Many of these are obvious, but they will be explained for clarity. Melting involves a substance moving from a solid to a liquid. Vaporizing takes place as a substance moves from liquid to gas. A substance that moves from a gas to a liquid is called condensing. Freezing is the process of a liquid becoming a solid. Sublimation is a solid moving straight to a gas.

The first four-phase changes are commonly seen in water. Ice melts to become liquid water, water boils/evaporates (vaporizes) to become steam. Water freezes to become ice; in the early morning, it is common in many places to see water on plants due to condensation. Sublimation is tricker to see on a day-to-day basis. The most common example involves carbon dioxide, aka dry ice, which is a favorite tool for Halloween. Other substances that sublimate include arsenic, iodine, and naphthalene (used for mothballs).

Phase changes are related to the kinetic theory of matter, which we will now turn our attention to.

Kinetic Theory of Matter

The kinetic theory of matter states that Molceults have space between them and are in constant random motion. We can say that the more heat, the faster the motion because more energy is present. For solid, the molecules can vibrate, but that is essentially it. All solids are vibrating, such as tables, chairs, desks, etc. However, the vibration is random, and thus the vibrations cancel each other.

Liquids can clearly move about, and this is why they cannot keep a single shape but is formed by their circumstances. This also applies to gasses. The real difference between the various phases is the space around molecules and the speed at which they are moving. When energy is added, molecules move apart and move faster. This explains a solid becoming a liquid and a liquid a gas.

Water breaks many rules in relation to the Kinetic theory of matter. When water freezes, instead of the molecules getting closer together, they actually push out and are thus less dense than water. This is one reason why ice floats and why you would find frozen ice on the top of a lake. The ice floats to the top, and by being on top, it insulates the animals inside the lake from the cold above.

Conclusion

Physical changes play a major role in all of our lives. The phase changes of water are used for various purposes in everyday life. It is beneficial to understand these concepts as they are so commonly encountered.

photo of clear glass measuring cup lot

Terms Related to Matter

Matter is the physical stuff that everything around us is generally made of. Trees, birds, water, etc., are all examples of matter. Since almost everything is considered matter, scientists have naturally found ways to classify matter to better understand it.

Types of Matter

One way matter is classified whether it is a pure substance or a mixture. A pure substance is a substance that has the same properties throughout out it. An example of a pure substance would be salt or sugar. Both of the substances are only made of salt or sugar, and the properties of these two substances are the same if you have one or the other in a sample.

ad

On the other hand, a mixture is a combination of two or more substances. For example, if you have salt and pepper inside the same shaker, this is a mixture. This is because separating the salt and the pepper from each other is possible. Separating pure substances is generally not possible physically. However, pure substances can further be broken down into elements and compounds.

Elements are fundamental substances that cannot be broken down into simpler substances. The periodic table contains all known elements. Examples include oxygen, sodium, carbon, etc. Compounds are pure substances that are made of two or more elements. Compound examples include salt, sugar, carbon dioxide, etc.

More on Mixtures

Returning to mixtures, there are two types of mixtures: homogenous and heterogeneous. Homogenous mixtures have the same composition throughout the sample. Examples include milk and sugar water. In both of these examples, the substances that make up the mixture are evenly spread throughout the sample.

Heterogeneous mixtures have different compositions in parts of the sample. A classic example of this is salad dressing. When salad dressing is allowed to sit, it separates clearly into the various substances/homogenous mixture that it is made up of. This is why salad dressing must be shaken before it is enjoyed.

Law of mass conservation

Antoine Lauren de Lavoisier developed the law of mass conservation, which states that in any chemical or physical process, the total mass of everything involved must remain the same. This means that if you start with 5 kg of wood and burn it, there will still be 5kg of matter in a different form. You might see a pile of ashes that weighs less but what happens is that some of the matter was converted to gases and smoke in the burning process. Essentially, matter can be created or destroyed but can only be converted or broken down.

Conclusion

No pun intended, but matter matters. For students, it is important to develop an understanding of concepts related to chemistry. Doing so may help at least some of them prepare for whatever occupation they may have in the future.